Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks

合作研究:神经网络中句法转换习得的归纳偏差

基本信息

  • 批准号:
    1919321
  • 负责人:
  • 金额:
    $ 32.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Children are prodigious language learners; they quickly master the words and rules that govern the languages spoken by the communities in which they are raised. In contrast, modern artificial intelligence systems like Siri and Alexa need to be trained extensively on massive data sets; even then the linguistic abilities of such systems lag far behind those of a child. Scientific research on language acquisition and structure has taught us that children come to the task of language learning with preconceptions of what their language will look like. They use such preconceptions, referred to as "biases", to guide their learning, favoring language structures that are compatible with those biases. By structuring computers systems to incorporate these biases, we could construct computer interfaces that would be more effective not only for languages such as English and Spanish, but also for the many languages where training data is scarce, spoken in smaller communities within the United States and internationally. Moreover, understanding more about how the biases necessary for language learning can be instantiated in a computer model will help to resolve a long-standing debate about the nature of these human biases: are they specific to language or are they the result of more general properties of human cognition?The current project explores the learning of regularities in natural language syntax by computer systems. The focus will be specifically on systems based on neural networks, which have been behind the recent revolutionary advances in language technologies. The project will study a wide range of neural network architectures, some with explicitly represented linguistic biases and some not, and compare them with respect to their abilities to learn carefully defined linguistic patterns. In contrast to past work that has evaluated linguistic knowledge of neural networks indirectly through a language modeling (word prediction) task, this project instead explores tasks that are formulated as transformations, which map one linguistic form to another (e.g., question formation, verbal inflection, negation, passivization, mapping to logical form). Not only are such mappings at the basis of a widely applied class of neural network architectures, so-called sequence to sequence networks, but they are also a common way of characterizing syntactic processes in linguistics. As a result, the use of such mappings allows a more direct assessment of the networks' linguistic abilities. Part of the project will involve the collaborative development of training and testing datasets for the mappings, with involvement by an interdisciplinary team of linguists and computer scientists, and these will be made available as a resource for the entire research community. These datasets will then be used as the basis for the detailed analysis of neural network representations of linguistic structure. Furthermore, explicit comparisons will be carried out between neural network and human performance on the mapping tasks under study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
孩子们是了不起的语言学习者;他们很快就掌握了支配他们成长所在社区所说语言的词汇和规则。相比之下,像Siri和Alexa这样的现代人工智能系统需要在海量数据集上接受广泛的培训;即使这样,这些系统的语言能力也远远落后于儿童。关于语言习得和结构的科学研究告诉我们,孩子们开始学习语言的时候,会对他们的语言会是什么样子有先入为主的概念。他们使用这种被称为“偏见”的先入为主的概念来指导他们的学习,偏爱与这些偏见相适应的语言结构。通过构建包含这些偏见的计算机系统,我们可以构建不仅对英语和西班牙语等语言更有效的计算机接口,而且对美国国内和国际上较小社区使用的训练数据稀缺的多种语言也是如此。此外,更多地了解如何在计算机模型中实例化语言学习所需的偏见,将有助于解决关于这些人类偏见的性质的长期争论:这些偏见是语言特有的,还是人类认知更普遍属性的结果?当前的项目探索了计算机系统学习自然语言句法中的规则。重点将特别放在基于神经网络的系统上,这些系统一直是最近语言技术革命性进步的幕后推手。该项目将研究广泛的神经网络结构,其中一些具有明确表示的语言偏见,另一些没有,并就它们学习仔细定义的语言模式的能力进行比较。与过去通过语言建模(单词预测)任务间接评估神经网络的语言知识的工作不同,该项目探索的是被表述为转换的任务,这些转换将一种语言形式映射到另一种语言形式(例如,问题形成、动词词形变化、否定、被动化、到逻辑形式的映射)。这种映射不仅是一类广泛应用的神经网络结构的基础,也是语言学中表征句法过程的一种常见方法。因此,使用这样的映射可以更直接地评估网络的语言能力。该项目的一部分将涉及在一个由语言学家和计算机科学家组成的跨学科小组的参与下,协作开发地图的培训和测试数据集,这些数据集将作为整个研究界的资源提供。这些数据集将被用作详细分析语言结构的神经网络表示的基础。此外,还将对神经网络和人类在所研究的映射任务中的表现进行明确的比较。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subject-verb Agreement with Seq2Seq Transformers: Bigger Is Better, but Still Not Best
与 Seq2Seq Transformer 的主谓一致:越大越好,但仍不是最好
Sequence-to-Sequence Networks Learn the Meaning of Reflexive Anaphora
  • DOI:
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Frank;Jackson Petty
  • 通讯作者:
    R. Frank;Jackson Petty
Formal Language Recognition by Hard Attention Transformers: Perspectives from Circuit Complexity
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aarohi Srivastava;Abhinav Rastogi;Abhishek Rao;Abu Awal Md Shoeb;Abubakar Abid;Adam Fisch;Adam R. Brown-Ad
  • 通讯作者:
    Aarohi Srivastava;Abhinav Rastogi;Abhishek Rao;Abu Awal Md Shoeb;Abubakar Abid;Adam Fisch;Adam R. Brown-Ad
What affects Priming Strength? Simulating Structural Priming Effect with PIPS
什么影响底漆强度?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Frank其他文献

192 Assessment of a relationship between functional and structural abnormalities in Brugada syndrome
  • DOI:
    10.1016/s1878-6480(10)70194-4
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Francois Rouzet;Samuel Burg;Vincent Algalarrondo;Pierre Nassar;Philipp Aouate;Robert Frank;Antoine Leenhardt;Michel Slama;Dominique Le Guludec
  • 通讯作者:
    Dominique Le Guludec
The DC Ablation Method Was Found By Serendipity.
直流电消融方法是偶然发现的。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Robert Frank
  • 通讯作者:
    Robert Frank
Termination of Health Benefits for Pittston Mine Workers: Impact on the Health and Security of Miners and Their Families
  • DOI:
    10.2307/3342926
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Raymond Y Demers;C William Michaels;Robert Frank;Kathy Fagan;Melissa McDiarmid;Theresa Rohr
  • 通讯作者:
    Theresa Rohr
The effects of lesions of nucleus rotundus on visual intensity difference thresholds in turtles <em>(Chrysemys picta)</em>
  • DOI:
    10.1016/0006-8993(83)91119-8
  • 发表时间:
    1983-03-28
  • 期刊:
  • 影响因子:
  • 作者:
    Alice Schade Powers;Robert Frank
  • 通讯作者:
    Robert Frank
Discovery of 1-(1H-Indazol-4-yl)-3-((1-Phenyl-1H-Pyrazol-5-yl)methyl) Ureas as Potent and Thermoneutral TRPV1 Antagonists.
发现 1-(1H-吲唑-4-基)-3-((1-苯基-1H-吡唑-5-基)甲基)脲作为有效和热中性的 TRPV1 拮抗剂。
  • DOI:
    10.1016/j.bmcl.2020.127548
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jin;Sun;Jihyae Ann;P. Blumberg;Heejin Ha;Young Dong Yoo;Robert Frank;B. Lesch;G. Bahrenberg;Hannelore Stockhausen;T. Christoph;Jeewoo Lee
  • 通讯作者:
    Jeewoo Lee

Robert Frank的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Frank', 18)}}的其他基金

Workshop: 10th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+10)
研讨会:第十届树邻接语法及相关形式主义国际研讨会(TAG 10)
  • 批准号:
    1026078
  • 财政年份:
    2010
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Phrase Structure and C-Command
协作研究:短语结构和 C 命令
  • 批准号:
    9710247
  • 财政年份:
    1997
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
Presidential Award for Excellence in Science and MathematicsTeaching
科学和数学教学卓越总统奖
  • 批准号:
    8850781
  • 财政年份:
    1988
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
Theoretical Analysis of Economic Rationality
经济理性的理论分析
  • 批准号:
    8707492
  • 财政年份:
    1987
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Continuing grant
Research in the Theory of Consumer Taste and Commitment
消费者品味与承诺理论研究
  • 批准号:
    8605829
  • 财政年份:
    1986
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of Autonomous Stability Mechanisms Using Agent-Based Macroeconomic Models and Development of Inductive Research Methods
使用基于主体的宏观经济模型阐明自主稳定机制和归纳研究方法的发展
  • 批准号:
    22K01403
  • 财政年份:
    2022
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks
合作研究:神经网络中句法转换习得的归纳偏差
  • 批准号:
    2114505
  • 财政年份:
    2020
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Inductive Biases for the Acquisition of Syntactic Transformations in Neural Networks
合作研究:神经网络中句法转换习得的归纳偏差
  • 批准号:
    1920924
  • 财政年份:
    2019
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Inductive Construction of Multi-Dimensional Environmental Processes from Point Soil Data
博士论文研究:从点土壤数据归纳构建多维环境过程
  • 批准号:
    1819727
  • 财政年份:
    2018
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
Cross-cutting research of data- and model-driven methods by interlacing deductive and inductive cellular automata constructing method
通过交织演绎和归纳元胞自动机构建方法进行数据驱动和模型驱动方法的交叉研究
  • 批准号:
    16K13772
  • 财政年份:
    2016
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
CAREER: Development of High-Performance Lignocellulosic Composites for Building Envelopes: Authentic Learning About Sustainable Materials Through Research-Based Inductive Approach
职业:开发用于建筑围护结构的高性能木质纤维素复合材料:通过基于研究的归纳方法真实地学习可持续材料
  • 批准号:
    1150316
  • 财政年份:
    2012
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: An Inductive Framework to Support Software Maintenance
III:小:协作研究:支持软件维护的归纳框架
  • 批准号:
    1156401
  • 财政年份:
    2011
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: An Inductive Framework to Support Software Maintenance
III:小:协作研究:支持软件维护的归纳框架
  • 批准号:
    1063253
  • 财政年份:
    2010
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Continuing Grant
Research and Development of MEMS Miniaturized Inductive Power Generator with Multilayer Ceramic Magnetic Circuit
多层陶瓷磁路MEMS小型感应发电机的研制
  • 批准号:
    22560254
  • 财政年份:
    2010
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
III: Small: Collaborative Research: An Inductive Framework to Support Software Maintenance
III:小:协作研究:支持软件维护的归纳框架
  • 批准号:
    1016868
  • 财政年份:
    2010
  • 资助金额:
    $ 32.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了