CCP Estimation of Continuous-Time Job Search Models

CCP 对连续时间求职模型的估计

基本信息

  • 批准号:
    2116400
  • 负责人:
  • 金额:
    $ 39.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This research project will provide new and innovative ways to analyze decisions to accept or decline job offers. Job search models are widely used in labor economics to address fundamental questions related to labor supply in a changing environment. The key to these models is that it takes time and effort for individuals to find a job. Even though these models are popular, it is often difficult to know if all important characteristics of the model can be recovered from data on labor market transitions and accepted wages. This project will develop a new and innovative framework that allows the researcher to learn about these characteristics from labor market data; the models are also considerably much simpler for empirical analysis than previous models. This simpler estimation method will make these models accessible to a broader set of empirical researchers. The project will then apply the proposed method to a rich longitudinal data set from the Hungarian labor market to analyze job search behavior over the course of the unemployment spell. The results of this research project will provide better understanding of people’s decisions to accept or not accept job offers and therefore provide guidance into policies to improve the functional of labor markets. It therefore contributes to US economic growth.This project adapts the conditional choice probability (CCP) estimation method to a continuous-time job search environment. The proposed framework incorporates preference shocks into the search framework, resulting in a tight connection between value functions and conditional choice probabilities. This approach makes it possible to establish constructive identification of all model parameters, which in turn translates into a simple and tractable estimation procedure. This model is applied to a rich longitudinal data set from the Hungarian labor market. The proposed application will provide new insights on the extent to which the job offer arrival rates as well as the utility of unemployment vary over the course of unemployment. It will also make it possible to evaluate the role played by search effort adjustment in these variations over the course of unemployment. The results of this research project will provide better understanding of people’s decisions to accept or not accept job offers and therefore provide guidance into policies to improve the functional of labor markets and increase economic growth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目将提供新的和创新的方法来分析决定接受或拒绝工作机会。在劳动经济学中,求职模型被广泛用于解决与不断变化的环境中劳动力供应相关的基本问题。这些模型的关键在于,个人找工作需要时间和精力。尽管这些模型很受欢迎,但通常很难知道该模型的所有重要特征是否可以从劳动力市场转型和可接受工资的数据中恢复。该项目将开发一个新的创新框架,使研究人员能够从劳动力市场数据中了解这些特征;对于实证分析来说,这些模型也比以前的模型简单得多。这种简单的估计方法将使这些模型为更广泛的实证研究人员所接受。然后,该项目将把提出的方法应用于匈牙利劳动力市场的丰富纵向数据集,以分析失业期间的求职行为。本研究项目的结果将更好地理解人们接受或不接受工作机会的决定,从而为改善劳动力市场功能的政策提供指导。因此,它有助于美国的经济增长。本课题将条件选择概率(CCP)估计方法应用于连续求职环境。提出的框架将偏好冲击纳入搜索框架,导致价值函数和条件选择概率之间的紧密联系。这种方法使得建立所有模型参数的建设性识别成为可能,这反过来又转化为一个简单而易于处理的估计过程。该模型应用于匈牙利劳动力市场丰富的纵向数据集。提出的应用程序将提供新的见解,在何种程度上,工作提供到达率以及失业的效用在失业过程中变化。这也将使人们有可能评价在失业过程中,寻找努力调整在这些变化中所起的作用。本研究项目的结果将更好地理解人们接受或不接受工作机会的决定,从而为改善劳动力市场功能和促进经济增长的政策提供指导。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arnaud Maurel其他文献

Recovering Ex Ante Returns and Preferences for Occupations Using Subjective Expectations Data
使用主观期望数据恢复事前回报和职业偏好
  • DOI:
    10.2139/ssrn.2513389
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter S. Arcidiacono;V. Hotz;Arnaud Maurel;Teresa Romano
  • 通讯作者:
    Teresa Romano
Rationalizing Rational Expectations? Tests and Deviations
合理化理性预期?
Inference on a Generalized Roy Model with Exclusion Restrictions
具有排除限制的广义 Roy 模型的推理
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arnaud Maurel
  • 通讯作者:
    Arnaud Maurel
Rationalizing Rational Expectations ? Tests and Deviations ∗ Preliminary
合理化理性预期? 测试和偏差 * 初步
  • DOI:
    10.3386/w25607
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xavier d'Haultfoeuille;C. Gaillac;Arnaud Maurel
  • 通讯作者:
    Arnaud Maurel
Conditional Choice Probability Estimation of Continuous-Time Job Search Models∗
连续时间求职模型的条件选择概率估计*
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter S. Arcidiacono;A. Gyetvai;Ekaterina Jardim;Arnaud Maurel
  • 通讯作者:
    Arnaud Maurel

Arnaud Maurel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Continuous Estimation of Arterial Diameter and Wall Thickness Waveforms Using Motion-Mode Ultrasound
使用运动模式超声连续估计动脉直径和壁厚波形
  • 批准号:
    575507-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Continuous estimation of pulmonary artery pressure fluctuations based on non-invasive measurement using microwave radar
基于微波雷达无创测量的肺动脉压力波动连续估计
  • 批准号:
    22K12917
  • 财政年份:
    2022
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Continuous estimation of arterial diameter waveforms using M-mode ultrasound images
使用 M 模式超声图像连续估计动脉直径波形
  • 批准号:
    564202-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 39.32万
  • 项目类别:
    University Undergraduate Student Research Awards
High-resolution crustal activity model estimation method using big data of continuous ground tilt changes
利用连续地面倾斜变化大数据的高分辨率地壳活动模型估算方法
  • 批准号:
    19K04023
  • 财政年份:
    2019
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive estimation of mixed discrete-continuous distributions under smoothness and sparsity
平滑和稀疏下混合离散连续分布的自适应估计
  • 批准号:
    1851796
  • 财政年份:
    2019
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
Continuous non-invasive blood pressure estimation.
连续无创血压估算。
  • 批准号:
    2118168
  • 财政年份:
    2018
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Studentship
Estimation of the continuous piecewise linear model and macroeconomic applications
连续分段线性模型的估计及宏观经济应用
  • 批准号:
    DP120103601
  • 财政年份:
    2012
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Discovery Projects
Estimation and Inference Methods for Continuous-Time Models
连续时间模型的估计和推理方法
  • 批准号:
    1227448
  • 财政年份:
    2012
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Standard Grant
Development of a continuous stable isotopic measuring system for precise separate estimation of sources and sinks of greenhouse gases
开发连续稳定同位素测量系统,用于精确单独估算温室气体源和汇
  • 批准号:
    21200030
  • 财政年份:
    2009
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)
Continuous estimation of blood concentration of substances using photo-technology
使用光学技术连续估算血液中物质浓度
  • 批准号:
    15591622
  • 财政年份:
    2003
  • 资助金额:
    $ 39.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了