Estimation and Inference Methods for Continuous-Time Models

连续时间模型的估计和推理方法

基本信息

  • 批准号:
    1227448
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This research project involves developing new estimation and inference tools for continuous-time semimartingale models sampled at high frequency. The semimartingale model is the most general model for asset prices that precludes arbitrage opportunities and, as a result, has been the workhorse model in modern asset pricing.Semimartingales have different components: a stochastic drift capturing the smooth movement of the asset price, a continuous martingale part modeling diffusive volatility and a jump part capturing abrupt movements of the asset price. While each component plays a distinct role in applications, it is statistically nontrivial to disentangle one component from the others. The objective of this project is to develop a novel statistical estimation and inference procedure for the jump component of the semimartingale. Compared with the existing methods, the new procedure will be more robust, especially when price jumps are difficult to identify from the data.While the motivating examples in the proposed activity are those of financial models, the methods developed in this project are valid for generic semimartingales. Semimartingales play a central role in the general theory of stochastic processes and stochastic calculus. Besides economics and finance, semimartingales have also been used in biological, chemical, and electrical applications. The econometric and statistical methods developed here may find applications in these fields provided that observations are available at high frequencies.The project integrates research and education by working closely with graduate students in the form of research assistantships. The proposed methodologies involve new implementation procedures whose code will be made publicly available. The results will be disseminated broadly through publications and presentations at seminars, conferences and professional association meetings.
该研究项目涉及开发新的估计和推理工具,用于以高频采样的连续时间半明星模型。 The semimartingale model is the most general model for asset prices that precludes arbitrage opportunities and, as a result, has been the workhorse model in modern asset pricing.Semimartingales have different components: a stochastic drift capturing the smooth movement of the asset price, a continuous martingale part modeling diffusive volatility and a jump part capturing abrupt movements of the asset price.尽管每个组件在应用程序中都起着独特的作用,但将一个组件与其他组件删除在统计学上是不平衡的。该项目的目的是为Semimartingale的跳跃成分开发新的统计估计和推理程序。与现有方法相比,新的过程将更加健壮,尤其是当价格上涨很难从数据中识别出来时。虽然拟议的活动中的激励示例是财务模型的示例,但本项目中开发的方法对于通用的半明星有效。半明星在随机过程和随机演算的一般理论中起着核心作用。除了经济学和金融外,半明天还用于生物,化学和电气应用中。这里开发的计量经济学和统计方法可能会在这些领域的应用中找到应用,只要观察值在高频上可用。拟议的方法涉及新的实施程序,其代码将公开可用。结果将通过研讨会,会议和专业协会会议上的出版物和演讲大致传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Li其他文献

The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses.
  • DOI:
    10.1016/j.fochx.2023.100989
  • 发表时间:
    2023-12-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Shan Zhang;Shimin Wu;Qinyan Yu;Xujiang Shan;Le Chen;Yuliang Deng;Jinjie Hua;Jiayi Zhu;Qinghua Zhou;Yongwen Jiang;Haibo Yuan;Jia Li
  • 通讯作者:
    Jia Li
Brassica napus BBM-GR Transformants from Bulk-Way Transformation
来自批量转化的甘蓝型油菜 BBM-GR 转化子
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吴晗;Han Wu;Jiaxu Wang;Kuang;Ying Zhao;Youhou Duan;Jia Li;Zhiqiang Liu;Zhipeng Zhang
  • 通讯作者:
    Zhipeng Zhang
Original Article Association of serum lipid metabolism with markers of urinary peptides in type 2 diabetes patients
原创文章 2型糖尿病患者血脂代谢与尿肽标志物的关系
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Li;Fu Guangzhen;Junjun Wang;Man Zhang
  • 通讯作者:
    Man Zhang
A Corpus-Based Study on the Classification and Processing Mechanism of English-Chinese One-To-Many Translation-Equivalent Word Pairs
基于语料库的英汉一对多翻译对等词对分类及处理机制研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanbei Zhao;Jia Li;Hongbing Xing
  • 通讯作者:
    Hongbing Xing
The incidence of pseudoprogressive disease associated with programmed cell death 1/programmed cell death ligand 1 inhibitors
与程序性细胞死亡 1/程序性细胞死亡配体 1 抑制剂相关的假进行性疾病的发生率
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jingyi Zhang;K. Tan;Xuejiao Jiang;Shu;Jia Li;C. Xue;Xu Zhang;H. Cui
  • 通讯作者:
    H. Cui

Jia Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Li', 18)}}的其他基金

RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: studying superconductivity and ferromagnetism in 2D material heterostructures with flat energy band
职业:研究具有平坦能带的二维材料异质结构中的超导性和铁磁性
  • 批准号:
    2143384
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
  • 批准号:
    2205004
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Cluster Analysis for High-Dimensional and Multi-Source Data
高维多源数据聚类分析
  • 批准号:
    2013905
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
  • 批准号:
    1462230
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Statistical Learning for Image Annotation
图像标注的统计学习
  • 批准号:
    1521092
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Parametric and nonparametric regressions on spot volatility
现货波动率的参数和非参数回归
  • 批准号:
    1326819
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Modeling of Mosquitoes Carrying Transgenes or Genetically Modified Bacteria in Preventing the Transmission of Mosquito-Borne Diseases
携带转基因或转基因细菌的蚊子模型以预防蚊媒疾病的传播
  • 批准号:
    1118150
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
The Second International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems; October 2009; Huntsville, Alabama
第二届生物系统群体数学建模与分析国际会议;
  • 批准号:
    0931213
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Essential Roles of Receptor-Like Kinases in Brassinosteroid and Cell-Death Control Signaling Pathways
受体样激酶在油菜素类固醇和细胞死亡控制信号通路中的重要作用
  • 批准号:
    0849206
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

弱监督图像分割推理学习方法研究
  • 批准号:
    62372238
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于图文多模态融合推理的生物激励设计方法研究
  • 批准号:
    52375254
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向视觉推理的知识嵌入相互引导方法研究
  • 批准号:
    62303361
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多视图数据信息粒联邦学习与规则推理方法研究
  • 批准号:
    62376279
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
融合情绪感知与归因推理的异步讨论多策略组合干预方法研究
  • 批准号:
    62377016
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Scalable Computational Methods for Genealogical Inference: from species level to single cells
用于谱系推断的可扩展计算方法:从物种水平到单细胞
  • 批准号:
    10889303
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Applying causal inference methods to improve estimation of the real-world benefits and harms of lung cancer screening
应用因果推理方法来改进对肺癌筛查的现实益处和危害的估计
  • 批准号:
    10737187
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
  • 批准号:
    10330130
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
  • 批准号:
    10620291
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了