MRI: Acquisition of Artificial Intelligence Super Computer (AISC) for Accelerating Scientific Discovery

MRI:收购人工智能超级计算机 (AISC) 以加速科学发现

基本信息

  • 批准号:
    2117439
  • 负责人:
  • 金额:
    $ 69.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The project funds the acquisition of an Artificial Intelligence Super Computer (AISC) which will enable researchers, entrepreneurs, educators, and policymakers to leverage previously unimaginable resources to make intelligence-¬informed decisions from data. AISC will enable transformative advances in myriad scientific, engineering, and healthcare fields that rely on artificial intelligence and machine learning (AI/ML) techniques and high-performance computing (HPC) technologies. AISC will support researchers from across Case Western Reserve University and their collaborating institutions. The spectrum of research enabled by AISC can be classified into four broad themes: (i) Cyberinfrastructure (CI) and computer science; (ii) material science; (iii) engineering systems; and (iv) biomedical engineering. In addition to supporting a broad spectrum of research, the project will build a vibrant multidisciplinary community around accelerating AI/ML computing and will conduct classes, tutorials, and workshops to engage undergraduates, graduates, post-docs and faculty in computer science and discipline sciences within the local Cleveland area and nationally.AISC adopts Tensor Core graphics processing units (GPUs) with large, fast, and high bandwidth memory along with cutting edge technologies such as Non-Volatile Memory Express (NVMe) based storage, and a high-speed interconnect. AISC can be partitioned into multiple instances each fully isolated with their own high-bandwidth memory, cache, and compute cores allowing support of varying size jobs with guaranteed quality of service (QoS) for every job, optimizing utilization and thereby extending the reach of AISC to more users. Broader impacts from AISC include not only research findings and new technologies, but transfer to practice and wide dissemination of advances to broad communities beyond the CI, AI and specific scientific domains. To fully realize the project’s broader impact vision, the following activities are envisioned: (i) Build STEM talent and improve public interest in science and computing; (ii) Advance discovery and understanding while promoting teaching, training, and learning; (iii) CI workforce development that is conversant with AI; (iv) Yearly domain-specific hackathons; and (v) Broaden participation of underrepresented groups by partnering with multiple major NSF-sponsored programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目资助购买一台人工智能超级计算机(AISC),这将使研究人员、企业家、教育工作者和政策制定者能够利用以前难以想象的资源,从数据中做出明智的决策。AISC将在依赖人工智能和机器学习(AI/ML)技术以及高性能计算(HPC)技术的无数科学、工程和医疗保健领域实现变革性进步。AISC将支持凯斯西储大学及其合作机构的研究人员。AISC的研究范围可以分为四个主题:(i)网络基础设施(CI)和计算机科学;(ii)材料科学;(iii)工程系统;(四)生物医学工程。除了支持广泛的研究外,该项目还将围绕加速人工智能/机器学习计算建立一个充满活力的多学科社区,并将举办课程、教程和研讨会,吸引克利夫兰地区和全国范围内计算机科学和学科科学领域的本科生、毕业生、博士后和教师。AISC采用Tensor Core图形处理单元(gpu),具有大、快、高带宽的内存,以及基于非易失性存储器(NVMe)的存储等尖端技术,以及高速互连。可以将AISC划分为多个实例,每个实例都有自己的高带宽内存、缓存和计算核心完全隔离,从而支持不同大小的作业,并保证每个作业的服务质量(QoS),从而优化利用率,从而将AISC的覆盖范围扩展到更多用户。AISC的广泛影响不仅包括研究成果和新技术,还包括向实践的转移,以及向CI、AI和特定科学领域以外的广泛社区广泛传播进展。为充分实现该计划更广泛的影响,计划开展以下活动:(i)培养STEM人才,提高公众对科学和计算的兴趣;(ii)在促进教学、培训和学习的同时促进发现和理解;(iii)熟悉人工智能的CI员工发展;年度特定领域黑客马拉松;(v)通过与nsf赞助的多个主要项目合作,扩大代表性不足群体的参与。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vipin Chaudhary其他文献

Applying graphics processor units to Monte Carlo dose calculation in radiation therapy
将图形处理器单元应用于放射治疗中的蒙特卡罗剂量计算
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Mohammad Reza Bakhtiari;H. Malhotra;Jones;Vipin Chaudhary;John Paul Walters;D. Nazareth
  • 通讯作者:
    D. Nazareth
5th CARS/SPIE Joint Workshop on Surgical PACS and the Digital Operating Room
第五届 CARS/SPIE 外科 PACS 和数字手术室联合研讨会
Visual Concept Networks: A Graph-Based Approach to Detecting Anomalous Data in Deep Neural Networks ⋆
视觉概念网络:一种基于图的方法来检测深度神经网络中的异常数据 ⋆
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Debargha Ganguly;Debayan Gupta;Vipin Chaudhary
  • 通讯作者:
    Vipin Chaudhary
INTERVERTEBRAL DISC DETECTION IN X-RAY IMAGES USING FASTER R-CNN : A DEEP LEARNING APPROACH
使用 FASTER R-CNN 检测 X 射线图像中的椎间盘:一种深度学习方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruhan Sa;William Owens;Raymond Wiegand;Mark Studin;Donald Capoferri;Alexander Greaux;Robert Rattray;Adam Hutton;John Cintineo;Vipin Chaudhary
  • 通讯作者:
    Vipin Chaudhary
Creating intelligent cyberinfrastructure for democratizing AI
创建智能网络基础设施以实现人工智能民主化
  • DOI:
    10.1002/aaai.12166
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dhabaleswar K. Panda;Vipin Chaudhary;Eric Fosler‐Lussier;R. Machiraju;Amitava Majumdar;Beth Plale;R. Ramnath;P. Sadayappan;Neelima Savardekar;Karen Tomko
  • 通讯作者:
    Karen Tomko

Vipin Chaudhary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vipin Chaudhary', 18)}}的其他基金

Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
  • 批准号:
    2320952
  • 财政年份:
    2023
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
  • 批准号:
    2216923
  • 财政年份:
    2022
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
Building Collaborations: A Workshop Facilitating US-India Bilateral Research Collaborations
建立合作:促进美印双边研究合作的研讨会
  • 批准号:
    2219326
  • 财政年份:
    2022
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
CDSE: Collaborative: Cyber Infrastructure to Enable Computer Vision Applications at the Edge Using Automated Contextual Analysis
CDSE:协作:使用自动上下文分析在边缘启用计算机视觉应用的网络基础设施
  • 批准号:
    2104377
  • 财政年份:
    2021
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
I-Corps: Standardized MRI Interpretation for Low Back Pain Diagnosis
I-Corps:用于腰痛诊断的标准化 MRI 解读
  • 批准号:
    1338960
  • 财政年份:
    2013
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Data Intensive Supercomputer for Innovative and Transformative Research in Science and Engineering
MRI-R2:采购数据密集型超级计算机,用于科学和工程的创新和变革研究
  • 批准号:
    0959870
  • 财政年份:
    2010
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
II-NEW: Acquisition of BCI - A Biomedical Computing Infrastructure
II-新:收购 BCI - 生物医学计算基础设施
  • 批准号:
    0855220
  • 财政年份:
    2009
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Continuing Grant
ITR: Opportunistic Parallel Computation
ITR:机会并行计算
  • 批准号:
    0081696
  • 财政年份:
    2000
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Cluster of Symmetric Multiprocessors
MRI:获取对称多处理器集群
  • 批准号:
    9977815
  • 财政年份:
    1999
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant

相似海外基金

Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
  • 批准号:
    2320735
  • 财政年份:
    2023
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Artificial Resynthesis Technology for Research, Training, and Experiential Learning
MRI:获取用于研究、培训和体验式学习的人工再合成技术
  • 批准号:
    2215936
  • 财政年份:
    2022
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
  • 批准号:
    RGPIN-2019-07244
  • 财政年份:
    2022
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Discovery Grants Program - Individual
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
  • 批准号:
    RGPIN-2019-07244
  • 财政年份:
    2021
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Acquisition of Dolly Sods GPU Cluster for Accelerated High-Performance Computing and Applications in Machine Learning and Artificial Intelligence in West Virginia
MRI:收购 Dolly Sods GPU 集群,以加速西弗吉尼亚州机器学习和人工智能的高性能计算和应用
  • 批准号:
    2117575
  • 财政年份:
    2021
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
  • 批准号:
    RGPIN-2019-07244
  • 财政年份:
    2020
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Acquisition of FlashTAIL - An All-NVMe Flash Storage Instrument for the Talon Artificial Intelligence & Machine Learning Cloud
MRI:收购 FlashTAIL - 用于 Talon 人工智能的全 NVMe 闪存存储仪器
  • 批准号:
    1920011
  • 财政年份:
    2019
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
  • 批准号:
    RGPIN-2019-07244
  • 财政年份:
    2019
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Acquisition of Artificial Intelligence & Deep Learning (AIDL) Training and Research Laboratory
MRI:人工智能的获取
  • 批准号:
    1828181
  • 财政年份:
    2018
  • 资助金额:
    $ 69.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了