Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
基本信息
- 批准号:RGPIN-2019-07244
- 负责人:
- 金额:$ 4.44万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a growing number of MRI methods that can assess the structural and physiological state of organs. However, their application to critical regions, such as the spinal cord or the heart, is strongly hampered by image artifacts caused by motion. Being able to accurately estimate and compensate those physiological variations during the MRI acquisition would be an effective means to remove those artifacts, which currently limit clinical interpretation.
The field of artificial intelligence has flourished in recent years. This is particularly true for deep learning (DL), which shows unprecedented performance for image analysis tasks, such as segmentation of anatomical and pathological features. One idea, which will be explored in Objective 1 (O1) “Leverage deep learning to advance MR acquisition”, is to develop DL models that can learn the physiological patterns that drive the image artifacts, and incorporate these models within the MRI acquisition chain such that physiological variations could be compensated in real-time.
In addition to the challenges in acquiring quantitative MRI data, this type of data requires complex analysis pipelines that are often executed manually and hence suffer from poor reproducibility. Again, DL appears to be an ideal candidate to help automatize certain analysis tasks. However, while dozens of papers on DL applied to medical imaging are published every year, most methods have been validated in single-center datasets and usually fail when applied to other centers. This happens because images across different centers have slightly different features than those used to train the algorithm (contrast, resolution, etc.). In O2 “Leverage MRI physics to advance deep learning applications in medical imaging”, we will explore novel DL architectures that could learn the origin of image contrast mechanisms by inputting acquisition parameters during training. These “better informed” DL models are expected to perform and generalize better across multiple centers.
In O3 “Translational research: Test, Validate, Implement and Communicate”, we will develop, train and validate DL models specific to medical analysis tasks (e.g., segmentation of MS lesions). We will implement and distribute them as open-source cloud computing platforms (for research use) and into proprietary PACS systems (for clinical use). Training and knowledge dissemination will play a big role.
The overarching purpose of this research program is thus to develop innovative methods for MRI acquisition and analysis, by exploiting AI both as a means and an end, and disseminating those methods throughout research centers and hospitals. This project will open the door to ambitious quantitative MRI applications that are currently not feasible. Given the exponential development of neuroimaging centers, I anticipate that my program will train outstanding HQP that will contribute to the advancement of Canada on the world medical imaging scene.
有越来越多的MRI方法可以评估器官的结构和生理状态。然而,他们的应用程序的关键区域,如脊髓或心脏,是强烈阻碍了由运动引起的图像伪影。能够在MRI采集期间准确地估计和补偿这些生理变化将是去除这些伪影的有效手段,这些伪影目前限制了临床解释。
人工智能领域近年来蓬勃发展。深度学习(DL)尤其如此,它在图像分析任务(如解剖和病理特征分割)方面表现出前所未有的性能。将在目标1(O1)“利用深度学习来推进MR采集”中探索的一个想法是开发可以学习驱动图像伪影的生理模式的DL模型,并将这些模型纳入MRI采集链中,以便可以实时补偿生理变化。
除了在获取定量MRI数据方面的挑战之外,这种类型的数据需要复杂的分析管道,这些分析管道通常是手动执行的,因此具有较差的再现性。同样,DL似乎是帮助自动化某些分析任务的理想候选者。然而,尽管每年都有数十篇关于DL应用于医学成像的论文发表,但大多数方法都已在单中心数据集中得到验证,并且在应用于其他中心时通常会失败。这是因为不同中心的图像与用于训练算法的图像(对比度,分辨率等)略有不同。在O2“利用MRI物理学来推进医学成像中的深度学习应用”中,我们将探索新的DL架构,该架构可以通过在训练期间输入采集参数来学习图像对比度机制的起源。这些“更好地了解”的DL模型有望在多个中心更好地执行和推广。
在O3“转化研究:测试,验证,实施和沟通”中,我们将开发,培训和验证特定于医学分析任务的DL模型(例如,MS病变的分割)。我们将把它们作为开源云计算平台(用于研究)和专有PACS系统(用于临床)来实施和分发。培训和知识传播将发挥重要作用。
因此,该研究计划的总体目的是开发MRI采集和分析的创新方法,将人工智能作为手段和目的,并在整个研究中心和医院传播这些方法。该项目将为目前尚不可行的雄心勃勃的定量MRI应用打开大门。鉴于神经影像中心的指数级发展,我预计我的计划将培养出优秀的HQP,这将有助于加拿大在世界医学影像领域的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CohenAdad, Julien其他文献
CohenAdad, Julien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CohenAdad, Julien', 18)}}的其他基金
Quantitative Magnetic Resonance Imaging
定量磁共振成像
- 批准号:
CRC-2020-00179 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
- 批准号:
RGPIN-2019-07244 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
- 批准号:
RGPIN-2019-07244 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Magnetic Resonance Imaging
定量磁共振成像
- 批准号:
CRC-2020-00179 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Quantitative Magnetic Resonance Imaging
定量磁共振成像
- 批准号:
1000233166-2019 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Quantitative Magnetic Resonance Imaging
定量磁共振成像
- 批准号:
1000230815-2015 - 财政年份:2020
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Quantitative Magnetic Resonance Imaging
定量磁共振成像
- 批准号:
1000230815-2015 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Connecting MRI physics and artificial intelligence to advance novel acquisition and analyses technologies for neuroimaging applications
连接 MRI 物理学和人工智能,推进神经影像应用的新型采集和分析技术
- 批准号:
RGPIN-2019-07244 - 财政年份:2019
- 资助金额:
$ 4.44万 - 项目类别:
Discovery Grants Program - Individual
Quantitative Magnetic Resonance Imaging
定量磁共振成像
- 批准号:
1000230815-2015 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Canada Research Chairs
Novel hybrid coils for real-time artifact suppression in magnetic resonance imaging
用于磁共振成像实时伪影抑制的新型混合线圈
- 批准号:
526583-2018 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Engage Grants Program
相似国自然基金
肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于生物学引导MRI-Transformer模型评估三阴性乳腺癌抗PD-1/PD-L1免疫治疗反应的研究
- 批准号:QN25H180017
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MRI深度学习Grad-CAM技术的临床显著性前列腺癌预测模型研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MRI时空异质性的影像组学联合临床文本数据挖掘预测乳腺癌HER2表达状态的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
核酸适体偶联的靶向对比剂用于早期膀胱癌的MRI成像诊断
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MRI深度组学联合液体活检技术构建乳腺癌新辅助化疗后pCR状态精准量化预测体系
- 批准号:MS25H180029
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MRI影像组学特征的子宫内膜癌分子分型术前预测模型构建
- 批准号:2025JJ80869
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
αvβ3整合素靶向有机探针用于NIR-II FL/MRI双模态成像引导的三阴性乳腺癌光热治疗研究
- 批准号:2025JJ81013
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
γ-谷氨酰转肽酶响应的近红外(NIR)余辉/MRI探针用于肝癌的诊疗一体化
- 批准号:2025JJ81188
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于时间依赖扩散MRI成像评估三阴性乳腺癌肿瘤免疫微环境特征及新辅助化学免疫治疗疗效的研究
- 批准号:2025JJ70285
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
MRI RI-Track 2: Development of the Expanded Owens Valley Solar Array (EOVSA)-15--Major Upgrade of a Community Facility for Solar and Space Weather Physics
MRI RI-轨道 2:扩展欧文斯谷太阳能电池阵列 (EOVSA)-15 的开发——太阳能和空间天气物理社区设施的重大升级
- 批准号:
2320478 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Standard Grant
Developing advanced diffusion MRI for early detection of Alzheimer's disease
开发先进的扩散磁共振成像技术以早期检测阿尔茨海默病
- 批准号:
10740034 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Multicomponent Modeling of High-Dimensional Multiparametric MRI Data
高维多参数 MRI 数据的多分量建模
- 批准号:
10861533 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
- 批准号:
10929242 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Development and Translation of D-glucose as a Diagnostic Agent for MRI of Cancer
D-葡萄糖作为癌症 MRI 诊断剂的开发和转化
- 批准号:
10732247 - 财政年份:2023
- 资助金额:
$ 4.44万 - 项目类别:
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
- 批准号:
10545512 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别:
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10668430 - 财政年份:2022
- 资助金额:
$ 4.44万 - 项目类别: