Collaborative Research: SHF: Small: Runtime Verification at the Edge
合作研究:SHF:小型:边缘运行时验证
基本信息
- 批准号:2118179
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today's autonomous technologies are now instrumented as limited-resource nodes collecting large amounts of data in real-time to better track and explain their system’s and environment’s behavior. A 2019 Cisco study found that there are 28.5 billion networked devices and connections in the world. Within this massive ecosystem, one class of future critical applications stands out: software applications that use networked nodes to provide detection of safety risks in the system or its physical environment. Example applications that require such monitoring include fleets of autonomous vehicles, health-monitoring wearable devices, search-and-rescue, and climate monitoring. These applications are already transforming lives, but suffer from a lack of timely, reliable and energy-efficient tools to monitor their correct operation. The focus of this project is to provide precisely such a monitoring infrastructure. This requires overcoming several difficulties. First, the monitoring code must be automatically generated, rather than hand-written, as this reduces the likelihood of errors. The monitor must be able to deal with analog/physical signals produced by the observed phenomena, such as wave heights or temperatures. It must also deal with drifting clocks on the different nodes, which do not read the same moment in time. It must also be resilient to node crashes and malicious attacks. Finally, it must be distributed over the nodes, rather than centralized, since this is less prone to catastrophic failures. The project radically extends the reach of runtime monitoring to new and economically important edge applications. This is achieved by implementing three research thrusts. (1) Develop theory and algorithms for distributed monitoring of continuous-time, asynchronous signals. The algorithms perform distributed optimization on the edge nodes themselves, thus eliminating the need for a central monitor. The algorithms incorporate partial knowledge of signal dynamics, where available, to accelerate convergence. (2) Develop theory and algorithms for incremental monitoring, where intermediate calculation results are still usable by the application should some nodes crash. The monitors will also accommodate nodes that intentionally falsify their data. (3) Conduct a rigorous validation of the algorithms on realistic autonomous vehicles, to establish their performance within a full software stack and in the presence of real-world noise and failure conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的自主技术现在被用作有限资源节点,实时收集大量数据,以更好地跟踪和解释其系统和环境的行为。思科2019年的一项研究发现,全球有285亿台联网设备和连接。在这个庞大的生态系统中,有一类未来的关键应用脱颖而出:使用网络节点来检测系统或其物理环境中的安全风险的软件应用。需要这种监测的示例应用包括自动驾驶车辆车队、健康监测可穿戴设备、搜索和救援以及气候监测。这些应用程序已经改变了人们的生活,但缺乏及时、可靠和节能的工具来监控其正确运行。该项目的重点就是提供这样一个监测基础设施。这需要克服几个困难。 首先,监控代码必须是自动生成的,而不是手写的,因为这样可以减少出错的可能性。监测器必须能够处理观测现象产生的模拟/物理信号,如波高或温度。它还必须处理不同节点上的漂移时钟,这些时钟在时间上不读取相同的时刻。它还必须对节点崩溃和恶意攻击具有弹性。最后,它必须分布在节点上,而不是集中式的,因为这不太容易发生灾难性的故障。该项目从根本上将运行时监控的范围扩展到新的、经济上重要的边缘应用程序。这是通过实施三个研究重点来实现的。(1)开发连续时间、异步信号分布式监测的理论和算法。该算法在边缘节点本身上执行分布式优化,从而消除了对中央监视器的需要。该算法将部分知识的信号动态,在可用的情况下,以加速收敛。(2)开发增量监控的理论和算法,即使某些节点崩溃,应用程序仍然可以使用中间计算结果。监视器还将容纳故意伪造数据的节点。(3)在真实的自动驾驶汽车上对算法进行严格的验证,以确定其在完整软件堆栈内以及在真实世界噪音和故障条件下的性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
10.1007/978-3-030-88494-9_1
10.1007/978-3-030-88494-9_1
- DOI:10.1007/978-3-030-88494-9_1
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Anik Momtaz, Niraj Basnet
- 通讯作者:Anik Momtaz, Niraj Basnet
Leveraging System Dynamics in Runtime Verification of Cyber-Physical Systems
在网络物理系统的运行时验证中利用系统动力学
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Abbas, H.;Bonakdarpour, B.
- 通讯作者:Bonakdarpour, B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Houssam Abbas其他文献
High-level modeling for computer-aided clinical trials of medical devices
医疗器械计算机辅助临床试验的高级建模
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Houssam Abbas;Zhihao Jiang;Kuk Jin Jang;M. Beccani;J. Liang;Rahul Mangharam - 通讯作者:
Rahul Mangharam
Temporal logic robustness for general signal classes
一般信号类别的时态逻辑鲁棒性
- DOI:
10.1145/3302504.3311817 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Houssam Abbas;Y. Pant;Rahul Mangharam - 通讯作者:
Rahul Mangharam
Three challenges in cyber-physical systems
网络物理系统的三大挑战
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rahul Mangharam;Houssam Abbas;Madhur Behl;Kuk Jin Jang;Miroslav Pajic;Zhihao Jiang - 通讯作者:
Zhihao Jiang
Regular Expressions for Irregular Rhythms
不规则节奏的正则表达式
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Houssam Abbas;Alena Rodionova;E. Bartocci;S. Smolka;R. Grosu - 通讯作者:
R. Grosu
Power-efficient algorithms for autonomous navigation
用于自主导航的节能算法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Y. Pant;Houssam Abbas;K. N. Nischal;Paritosh Kelkar;Dhruva Kumar;Joseph Devietti;Rahul Mangharam - 通讯作者:
Rahul Mangharam
Houssam Abbas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Houssam Abbas', 18)}}的其他基金
CAREER: Computational Ethics in Human-Scale Autonomous Systems
职业:人类规模自治系统中的计算伦理
- 批准号:
2145291 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CCRI: MEDIUM: Collaborative Research: F1/10 RACECAR: Community Platforms for for Safe, Secure and Coordinated Autonomy
CCRI:中:合作研究:F1/10 RACECAR:安全、可靠和协调自治的社区平台
- 批准号:
1925652 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant