HDR Institute: HARP- Harnessing Data and Model Revolution in the Polar Regions

HDR 研究所:HARP——利用极地地区的数据和模型革命

基本信息

  • 批准号:
    2118285
  • 负责人:
  • 金额:
    $ 1300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Climate-change induced loss of polar ice sheets impacts many lives and increases coastal flooding by rising sea level and affecting ocean circulation. However, it remains difficult to accurately predict how quickly the ice sheets will continue to shrink. In particular, we are still challenged by a limited understanding of transdisciplinary processes that determine ice sheet change, such as the role of subglacial topography and ice-atmosphere-ocean interactions. Timely investment in machine learning and data intensive research can revolutionize the way that scientists currently answer questions related to ice dynamics. This HDR Institute serves as a research hub where experts in data science, Arctic and Antarctic science, and cyberinfrastructure in academia, government, and private sectors come together to develop transformative and integrative data science solutions to reduce uncertainties in projecting future sea-level rise and climate change. i-HARP researchers investigate the potential of novel physics-aware data science and machine learning approaches to address national priorities and challenges on Navigating the New Arctic, climate change, and sea-level rise.The HDR Institute aims to harness massive heterogeneous, noisy, and discontinuous data in space and time and integrate data with numerical and physical models. Researchers at i-HARP are investigating novel data science techniques including deep generative adversarial networks, graph neural networks, meta learning, hybrid networks, physics-informed machine learning, causal artificial intelligence, data assimilation, spatiotemporal deep learning, and scalable algorithms. Due to the fundamental nature of data science problems that i-HARP addresses, the solutions can be translated to other disciplines such as remote sensing, medicine, and autonomous driving. Moreover, the convergence team champions multiple clusters of research-integrated educational initiatives, with a specific focus on facilitating cross-disciplinary collaborations, training next-generation multi-disciplinary researchers and engaging the public in scientific inquiry as related to climate change and data science. In partnership with related communities, i-HARP designs curricula, and offers hands-on community workshops, lecture series, conference tutorials, and training. i-HARP engages students from underrepresented minority groups by leveraging several existing organizations for underrepresented minorities.This project is part of the National Science Foundation's Big Idea activities in Harnessing the Data Revolution (HDR). This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Section for Antarctic Sciences and the Section for Arctic Sciences within the NSF Office of Polar Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化引起的极地冰盖丧失影响到许多人的生活,并因海平面上升和影响海洋环流而增加沿海洪水。然而,仍然很难准确预测冰盖将以多快的速度继续缩小。特别是,我们仍然受到挑战的跨学科的过程,确定冰盖变化,如冰下地形和冰-大气-海洋相互作用的作用有限的理解。对机器学习和数据密集型研究的及时投资可以彻底改变科学家目前回答与冰动力学相关问题的方式。该HDR研究所是一个研究中心,数据科学,北极和南极科学以及学术界,政府和私营部门的网络基础设施专家聚集在一起,开发变革性和综合性的数据科学解决方案,以减少预测未来海平面上升和气候变化的不确定性。i-HARP研究人员研究了新型物理感知数据科学和机器学习方法的潜力,以解决国家在新北极导航,气候变化和海平面上升方面的优先事项和挑战。HDR研究所旨在利用空间和时间上的大量异构,噪声和不连续数据,并将数据与数值和物理模型相结合。i-HARP的研究人员正在研究新的数据科学技术,包括深度生成对抗网络,图神经网络,Meta学习,混合网络,物理信息机器学习,因果人工智能,数据同化,时空深度学习和可扩展算法。由于i-HARP解决的数据科学问题的基本性质,解决方案可以转化为其他学科,如遥感,医学和自动驾驶。此外,融合团队支持多个研究综合教育计划集群,特别关注促进跨学科合作,培训下一代多学科研究人员,并让公众参与与气候变化和数据科学相关的科学探究。通过与相关社区的合作,i-HARP设计课程,并提供实践社区研讨会,讲座系列,会议教程和培训。i-HARP通过利用几个现有的代表性不足的少数群体的组织来吸引来自代表性不足的少数群体的学生。该项目是美国国家科学基金会利用数据革命(HDR)的大创意活动的一部分。 该奖项由高级网络基础设施办公室颁发,由NSF极地项目办公室南极科学部和北极科学部共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mobile Augmented Reality System for Emergency Response
用于应急响应的移动增强现实系统
Metrics for the quality and consistency of ice layer annotations
冰层注释的质量和一致性指标
TSSA: two-step semi-supervised annotation for englacial radargrams on the Greenland ice sheet
TSSA:格陵兰冰盖冰川雷达图的两步半监督注释
Enhanced Deep Learning Super-Resolution for Bathymetry Data
Evaluating Machine Learning and Statistical Models for Greenland Subglacial Bed Topography
评估格陵兰冰下床地形的机器学习和统计模型
  • DOI:
    10.1109/icmla58977.2023.00097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi, Katherine;Dewar, Angelina;Tabassum, Tartela;Lu, Jason;Chen, Ray;Alam, Homayra;Faruque, Omar;Li, Sikan;Morlighem, Mathieu;Wang, Jianwu
  • 通讯作者:
    Wang, Jianwu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vandana Janeja其他文献

Adopting Foundational Data Science Curriculum with Diverse Institutional Contexts
采用具有不同机构背景的基础数据科学课程

Vandana Janeja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vandana Janeja', 18)}}的其他基金

Collaborative Research: SCIPE: Enhancing the Transdisciplinary Research Ecosystem for Earth and Environmental Science with Dedicated Cyber Infrastructure Professionals
合作研究:SCIPE:通过专门的网络基础设施专业人员增强地球与环境科学的跨学科研究生态系统
  • 批准号:
    2321009
  • 财政年份:
    2023
  • 资助金额:
    $ 1300万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
  • 批准号:
    2210011
  • 财政年份:
    2022
  • 资助金额:
    $ 1300万
  • 项目类别:
    Standard Grant

相似海外基金

Predoctoral Summer Institute
博士前暑期学院
  • 批准号:
    2415889
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Standard Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Z531844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Research Grant
Cardiff Metropolitan University and Chartered Institute for the Management of Sport and Physical Activity KTP 23_24 R2
卡迪夫城市大学和特许体育与体育活动管理研究所 KTP 23_24 R2
  • 批准号:
    10078815
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Knowledge Transfer Partnership
Open Access Block Award 2024 - The James Hutton Institute Biology
2024 年开放获取区块奖 - 詹姆斯·赫顿生物学研究所
  • 批准号:
    EP/Z532514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Babraham Institute
2024 年开放获取区块奖 - Babraham Institute
  • 批准号:
    EP/Z53268X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Research Grant
IUCRC Phase III Virginia Institute of Marine Science for Science Center for Marine Fisheries (SCEMFIS)
IUCRC 第三阶段 弗吉尼亚海洋科学研究所海洋渔业科学中心 (SCEMFIS)
  • 批准号:
    2332984
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Continuing Grant
Oxford Brookes University and Institute for Food, Brain and Behaviour KTP 23_24 R2
牛津布鲁克斯大学和食物、大脑和行为研究所 KTP 23_24 R2
  • 批准号:
    10078712
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Knowledge Transfer Partnership
Open Access Block Award 2024 - Earlham Institute
2024 年开放获取区块奖 - Earlham Institute
  • 批准号:
    EP/Z531492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Institute for Fiscal Studies
2024 年开放获取区块奖 - 财政研究所
  • 批准号:
    EP/Z531534/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1300万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了