Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics

协作研究:PPoSS:规划:超大规模稀疏数据分析

基本信息

  • 批准号:
    2118385
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The graph data structure is used for storing and manipulating relational data. Tensors are a higher-order generalization of the two-dimensional matrix representation. Both graphs and tensors are used in exploratory and automated data analysis. Applications areas include cybersecurity, complex system analysis, and personalized healthcare. There exist a myriad of known algorithms for typical data analysis tasks in these areas. For instance, the problem of community identification in graphs, referring to automatically identifying well-connected groups of vertices in graphs, has dozens of algorithms. Analogous to the singular value decomposition in matrices, several tensor factorizations exist with diverse use-cases. Both graph algorithms and tensor factorizations use computer storage formats inspired by matrix computations. This project focuses on data analysis use-cases that result in large-scale graphs and tensors, necessitating parallel and distributed processing. The project's novelties are in identifying and developing unifying parallel algorithm design principles that span multiple graph computations and tensor factorizations. In the planning stage, several focused research tasks will explore eight unifying themes.The project aims to develop the foundations for an end-to-end streaming data analytics system with performance comparable to highly tuned static graph analysis benchmarks on current high-end workstations and supercomputers. The investigators' multi-disciplinary expertise span high-performance computing, theory and algorithms, computer architecture, and programming languages and compilers. The cross-cutting research aims include generalizable principles to orchestrate intra- and inter-node communication, multiple approaches for exploiting hierarchical parallelism, locality-enhancing strategies, and automatic performance tuning. The software artifacts from the planning stage could form the basis for new data analytic benchmarks. The investigators will incorporate research findings into the courses they teach. Engaging experts from the national laboratories and the industry in the planning stage will help solidify future large-scale efforts. The investigators will leverage and contribute to existing institutional programs that broaden participation in computing research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形数据结构用于存储和操作关系数据。张量是二维矩阵表示的高阶推广。图形和张量都用于探索性和自动化数据分析。应用领域包括网络安全、复杂系统分析和个性化医疗。对于这些领域中的典型数据分析任务,存在无数已知的算法。例如,图中的社区识别问题,指的是自动识别图中连接良好的顶点组,有几十种算法。与矩阵中的奇异值分解类似,存在几种具有不同用例的张量分解。图形算法和张量分解都使用受矩阵计算启发的计算机存储格式。该项目专注于数据分析用例,这些用例产生大规模的图形和张量,需要并行和分布式处理。该项目的创新之处在于确定和开发了跨越多个图计算和张量分解的统一并行算法设计原则。在规划阶段,几个重点研究任务将探索八个统一的主题。该项目旨在开发一个端到端流数据分析系统的基础,其性能可与当前高端工作站和超级计算机上高度调整的静态图形分析基准相媲美。研究人员的多学科专业知识涵盖高性能计算、理论和算法、计算机体系结构以及编程语言和编译器。交叉研究的目标包括编排节点内和节点间通信的通用原则、利用分层并行的多种方法、局部性增强策略和自动性能调整。规划阶段的软件构件可以构成新的数据分析基准的基础。研究人员将把研究成果纳入他们教授的课程中。在规划阶段聘请国家实验室和该行业的专家将有助于巩固未来的大规模努力。调查人员将利用并促进现有的机构项目,扩大对计算研究的参与。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Bader其他文献

The effect of combined spinal-epidural anesthesia versus general anesthesia on the recovery time of intestinal function in young infants undergoing intestinal surgery: a randomized, prospective, controlled trial
  • DOI:
    10.1016/j.jclinane.2012.02.004
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mostafa Somri;Ibrahim Matter;Constantinos A. Parisinos;Ron Shaoul;Jorge G. Mogilner;David Bader;Eldar Asphandiarov;Luis A. Gaitini
  • 通讯作者:
    Luis A. Gaitini
DECREASED LYMPHOCYTIC BETA ADRENORECEPTOR BINDING CAPACITY IN APNEA OF INFANCY
  • DOI:
    10.1203/00006450-198704010-00256
  • 发表时间:
    1987-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    David Bader;S Buckley;T G Keens;D Warburton
  • 通讯作者:
    D Warburton
Investigating an interchangeable potential between heart and gut mesothelial development
  • DOI:
    10.1016/j.ydbio.2011.05.236
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca T. Thomason;Niki Winters;Emily Cross;David Bader
  • 通讯作者:
    David Bader
Local cues influence atrial and ventricular differentiation of precardiac mesoderm
  • DOI:
    10.1016/s0022-2828(87)80673-9
  • 发表时间:
    1987-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathan Satin;David Bader;Robert L. DeHaan
  • 通讯作者:
    Robert L. DeHaan
Unintended Consequence: Diversity as a Casualty of Eliminating United States Medical Licensing Examination Step 1 Scores
  • DOI:
    10.1016/j.jacr.2023.07.019
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Felipe M. Campos;Lars J. Grimm;Charles M. Maxfield;Sabina Amin;David Bader;Brooke Beckett;Kevin Carter;Teresa Chapman;Bernard Chow;Amanda Derylo;Francis Flaherty;Michael Fox;Jennifer Gould;Robert Groves;Darel Heitkamp;John Heymann;Christopher Ho;Marion Hughes;Nathan Hull;Abtin Jafroodifar
  • 通讯作者:
    Abtin Jafroodifar

David Bader的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Bader', 18)}}的其他基金

EAGER:High Performance Algorithms for Interactive Data Science at Scale
EAGER:大规模交互式数据科学的高性能算法
  • 批准号:
    2109988
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
  • 批准号:
    2118458
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: EMBRACE: Evolvable Methods for Benchmarking Realism through Application and Community Engagement
合作研究:拥抱:通过应用和社区参与对现实主义进行基准测试的演化方法
  • 批准号:
    1535058
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: IEEE IPDPS Conference Student Participation Support
合作研究:IEEE IPDPS 会议学生参与支持
  • 批准号:
    1362300
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Using PDE Descriptions to Generate Code Precisely Tailored to Energy-Constrained Systems Including Large GPU Accelerated Clusters
EAGER:协作研究:使用偏微分方程描述生成专门针对能源受限系统(包括大型 GPU 加速集群)定制的代码
  • 批准号:
    1265434
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative: The XScala Project: A Community Repository for Model-Driven Design and Tuning of Data-Intensive Applications for Extreme-Scale Accelerator-Based Systems
SI2-SSI:协作:XScala 项目:用于基于超大规模加速器的系统的模型驱动设计和数据密集型应用程序调整的社区存储库
  • 批准号:
    1339745
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Software Infrastructure for Accelerating Grand Challenge Science with Future Computing Platforms
协作研究:利用未来计算平台加速重大挑战科学的软件基础设施
  • 批准号:
    1216504
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Whole-genome Evolution through Petascale Simulation
合作研究:通过千万亿次模拟了解全基因组进化
  • 批准号:
    0904461
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Establishing an I/UCRC Center for Multicore Productivity Research (CMPR)
合作研究:建立 I/UCRC 多核生产力研究中心 (CMPR)
  • 批准号:
    0831110
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: CRI: IAD: Development of a Research Infrastructure
合作研究:CRI:IAD:研究基础设施的开发
  • 批准号:
    0708307
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了