Collaborative Research: DMREF: Rheostructurally-informed Neural Networks for geopolymer material design
合作研究:DMREF:用于地质聚合物材料设计的流变结构信息神经网络
基本信息
- 批准号:2118962
- 负责人:
- 金额:$ 76.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geopolymers are inorganic and non-crystalline structural materials that can be obtained from natural soils via a chemical activation. They have great potential as additives to reduce cement consumption in construction and thus can help reducing green-house gas emissions of cement manufacturing. They also promote the adoption of local soil resources for traditional and 3D printing-based construction. Important for human space exploration, geopolymers can be also formed from lunar and Martian soils with limited water, and thus are excellent candidates for space infrastructure such as landing pads and shelters. However, at present processing of geopolymers into desirable structures remains far behind their laboratory scale performance, due to the wide range of chemistries and characteristics of different indigenous geopolymers. This award combines experiments, microscopic simulations, and machine learning approaches that will enable scientists and engineers to effectively design and control geopolymers properties and performances. In collaboration with the Air Force Research Laboratory, the team will educate and train future materials researchers with multi-tool skills that span experiments, simulations, and data-driven algorithms.Geopolymers are amorphous and porous solid matrices that develop as gels when an alumino-silicate source (typically from clays) reacts with an alkali hydroxide or alkali silicate solution, yielding ceramic-like structures and mechanics. The range of multiscale pore morphologies and material strengths of geopolymer gels makes them ideally versatile and potentially smart binders. However, the primary challenge hindering wide adoption of these sustainable materials is the complexity of controlling property development and processing, given the significant chemical variability that makes their design cycle difficult and empirical. Artificial intelligence approaches are required to bridge the gap between the deep fundamental understanding of a few materials and the need for sustainable processing of a wide range of material resources on earth and other planets with limited experimentation efforts. The team will construct a data-driven platform informed by integrated multiscale modeling and experiments, in order to accelerate design of processing routes for geopolymers into desirable structures. The PIs will work together to develop rheology-informed neural networks that use the multi-scale and multi-component dynamics of geopolymeric systems under load and in flowing conditions. To do so, they have planned a comprehensive interrogation of experiments and simulations that hierarchically span from the atomistic to macroscale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地质聚合物是无机和非结晶结构材料,可以通过化学活化从天然土壤中获得。它们作为添加剂具有很大的潜力,可以减少建筑中的水泥消耗,从而有助于减少水泥制造过程中的温室气体排放。它们还促进了当地土壤资源用于传统和基于3D打印的建筑。对于人类太空探索来说,地质聚合物也可以从水资源有限的月球和火星土壤中形成,因此是空间基础设施的绝佳候选者,如着陆垫和避难所。然而,由于不同的本地地质聚合物的广泛的化学性质和特性,目前将地质聚合物加工成期望的结构仍然远远落后于它们的实验室规模性能。该奖项结合了实验,微观模拟和机器学习方法,使科学家和工程师能够有效地设计和控制地质聚合物的性能和性能。该团队将与空军研究实验室合作,教育和培训未来的材料研究人员,使其具备跨实验、模拟和数据驱动算法的多工具技能。地质聚合物是无定形和多孔的固体基质,当铝硅酸盐源(通常来自粘土)与碱金属氢氧化物或碱金属硅酸盐溶液反应时,会形成凝胶,产生类似陶瓷的结构和力学性能。地质聚合物凝胶的多尺度孔隙形态和材料强度范围使其成为理想的通用和潜在的智能粘合剂。然而,阻碍这些可持续材料广泛采用的主要挑战是控制属性开发和加工的复杂性,因为显著的化学变化性使其设计周期变得困难和经验性。需要人工智能方法来弥合对少数材料的深刻基本理解与需要在有限的实验努力下可持续地处理地球和其他星球上的广泛材料资源之间的差距。该团队将构建一个数据驱动的平台,通过集成的多尺度建模和实验来提供信息,以加速地质聚合物加工路线的设计,使其成为理想的结构。PI将共同开发流变学信息神经网络,该网络使用负载和流动条件下地质聚合物系统的多尺度和多组分动力学。为此,他们计划对从原子到宏观尺度的实验和模拟进行全面的调查。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological origins of yielding in short-ranged weakly attractive colloidal gels
短程弱吸引力胶体凝胶屈服的拓扑起源
- DOI:10.1063/5.0123096
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mangal, Deepak;Nabizadeh, Mohammad;Jamali, Safa
- 通讯作者:Jamali, Safa
Fractional rheology-informed neural networks for data-driven identification of viscoelastic constitutive models
用于数据驱动识别粘弹性本构模型的基于分数流变学的神经网络
- DOI:10.1007/s00397-023-01408-w
- 发表时间:2023
- 期刊:
- 影响因子:2.3
- 作者:Dabiri, Donya;Saadat, Milad;Mangal, Deepak;Jamali, Safa
- 通讯作者:Jamali, Safa
A rheologist's guideline to data-driven recovery of complex fluids' parameters from constitutive models
流变学家从本构模型中数据驱动恢复复杂流体参数的指南
- DOI:10.1039/d3dd00036b
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Saadat, Milad;Mangal, Deepak;Jamali, Safa
- 通讯作者:Jamali, Safa
Data-driven selection of constitutive models via rheology-informed neural networks (RhINNs)
- DOI:10.1007/s00397-022-01357-w
- 发表时间:2022-08-03
- 期刊:
- 影响因子:2.3
- 作者:Saadat, Milad;Mahmoudabadbozchelou, Mohammadamin;Jamali, Safa
- 通讯作者:Jamali, Safa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Safa Jamali其他文献
Data-driven techniques in rheology: Developments, challenges and perspective
流变学中的数据驱动技术:发展、挑战与展望
- DOI:
10.1016/j.cocis.2024.101873 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:7.000
- 作者:
Deepak Mangal;Anushka Jha;Donya Dabiri;Safa Jamali - 通讯作者:
Safa Jamali
Data-driven methods in Rheology
流变学中的数据驱动方法
- DOI:
10.1007/s00397-023-01416-w - 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Kyung Hyun Ahn;Safa Jamali - 通讯作者:
Safa Jamali
UniFIDES: Universal Fractional Integro-Differential Equation Solvers
UniFIDES:通用分数阶积分微分方程求解器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Milad Saadat;Deepak Mangal;Safa Jamali - 通讯作者:
Safa Jamali
Safa Jamali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Safa Jamali', 18)}}的其他基金
Collaborative Research: Visualizing statistical force networks in colloidal materials far-from-equilibrium
合作研究:可视化远离平衡状态的胶体材料中的统计力网络
- 批准号:
2104869 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Continuing Grant
ISS: Collaborative Research: Bimodal Colloidal Assembly, Coarsening and Failure: Decoupling Sedimentation and Particle Size Effects
ISS:合作研究:双峰胶体组装、粗化和失效:解耦沉积和粒径效应
- 批准号:
2025453 - 财政年份:2020
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant