Collaborative Research: PPoSS: Planning: SEEr: A Scalable, Energy Efficient HPC Environment for AI-Enabled Science
合作研究:PPoSS:规划:SEEr:面向人工智能科学的可扩展、节能的 HPC 环境
基本信息
- 批准号:2119056
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AI-enabled science, where advanced machine-learning technologies are used for surrogate models, autotuning, and in situ data analysis, is quickly being adopted in science and engineering for tackling complex and challenging computational problems. The wide adoption of heterogeneous systems embedded with different types of processing devices (CPUs, GPUs, and AI accelerators) further complicates the execution of AI-enabled science on supercomputers. The research for AI-enabled simulations on heterogeneous systems is far from sufficient. The project’s novelty is to explore key features essential for a scalable, energy-efficient HPC environment for AI-enabled science on heterogeneous systems. The unified team of researchers tackles the problem in a cross-layer manner, focusing on the synergies among application algorithms, programming languages and compilers, runtime systems, and high-performance computing. The project's impact is to catalyze scientific discoveries by making scientific computing faster, more scalable and more energy-efficient. The long-term research vision is to develop SEEr, a scalable, energy-efficient HPC environment for scaling up and accelerating AI-enabled science for scientific discovery. This planning project explores fundamental questions to realize the research vision. The team focuses on scalable surrogate models for an incompressible computational fluid dynamics application using OpenFOAM, cost models for this application on heterogeneous resources, dynamic task mapping for efficient execution, and performance and power monitoring and characterization to explore tradeoffs among performance, scalability, and energy efficiency on a state-of-the-art testbed named Polaris.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能支持的科学,先进的机器学习技术用于替代模型,自动调整和原位数据分析,正在迅速被科学和工程所采用,以解决复杂和具有挑战性的计算问题。嵌入不同类型处理设备(CPU、GPU和AI加速器)的异构系统的广泛采用进一步使超级计算机上AI科学的执行变得复杂。在异构系统上进行人工智能仿真的研究还远远不够。该项目的新奇之处在于探索可扩展、节能的HPC环境所必需的关键功能,以支持异构系统上的AI科学。统一的研究团队以跨层的方式解决这个问题,专注于应用程序算法,编程语言和编译器,运行时系统和高性能计算之间的协同作用。该项目的影响是通过使科学计算更快,更具可扩展性和更节能来促进科学发现。长期研究愿景是开发SEEr,这是一个可扩展的高能效HPC环境,用于扩展和加速支持AI的科学,以促进科学发现。该规划项目探讨了实现研究愿景的基本问题。该团队专注于使用OpenFOAM的不可压缩计算流体动力学应用程序的可扩展代理模型,异构资源上此应用程序的成本模型,高效执行的动态任务映射,以及性能和功率监控和表征,以探索性能,可扩展性,和能源效率,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance and power modeling and prediction using MuMMI and 10 machine learning methods
使用 MuMMI 和 10 种机器学习方法进行性能和功耗建模和预测
- DOI:10.1002/cpe.7254
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wu, Xingfu;Taylor, Valerie;Lan, Zhiling
- 通讯作者:Lan, Zhiling
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Papka其他文献
Michael Papka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Papka', 18)}}的其他基金
CC*IIE Integration: Collaborative Research: EPSON: Embracing Parallel Networks and Storage for Predictable End-to-End Data Movement
CC*IIE 集成:协作研究:EPSON:采用并行网络和存储实现可预测的端到端数据移动
- 批准号:
1440797 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Multiscale Models for the Cerebrovasculature: Algorithms, Software and Petaflop Simulations
合作研究:可扩展的脑血管多尺度模型:算法、软件和千万亿次模拟
- 批准号:
0904190 - 财政年份:2009
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
MRI: Acquisition of PADS - A Petscale Active Data Store
MRI:收购 PADS - Petscale 活动数据存储
- 批准号:
0821678 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant