Collaborative Research: PPoSS: Planning: Extreme-scale Sparse Data Analytics
协作研究:PPoSS:规划:超大规模稀疏数据分析
基本信息
- 批准号:2119047
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The graph data structure is used for storing and manipulating relational data. Tensors are a higher-order generalization of the two-dimensional matrix representation. Both graphs and tensors are used in exploratory and automated data analysis. Applications areas include cybersecurity, complex system analysis, and personalized healthcare. There exist a myriad of known algorithms for typical data analysis tasks in these areas. For instance, the problem of community identification in graphs, referring to automatically identifying well-connected groups of vertices in graphs, has dozens of algorithms. Analogous to the singular value decomposition in matrices, several tensor factorizations exist with diverse use-cases. Both graph algorithms and tensor factorizations use computer storage formats inspired by matrix computations. This project focuses on data analysis use-cases that result in large-scale graphs and tensors, necessitating parallel and distributed processing. The project's novelties are in identifying and developing unifying parallel algorithm design principles that span multiple graph computations and tensor factorizations. In the planning stage, several focused research tasks will explore eight unifying themes.The project aims to develop the foundations for an end-to-end streaming data analytics system with performance comparable to highly tuned static graph analysis benchmarks on current high-end workstations and supercomputers. The investigators' multi-disciplinary expertise span high-performance computing, theory and algorithms, computer architecture, and programming languages and compilers. The cross-cutting research aims include generalizable principles to orchestrate intra- and inter-node communication, multiple approaches for exploiting hierarchical parallelism, locality-enhancing strategies, and automatic performance tuning. The software artifacts from the planning stage could form the basis for new data analytic benchmarks. The investigators will incorporate research findings into the courses they teach. Engaging experts from the national laboratories and the industry in the planning stage will help solidify future large-scale efforts. The investigators will leverage and contribute to existing institutional programs that broaden participation in computing research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形数据结构用于存储和操作关系数据。张量是二维矩阵表示的高阶推广。图形和张量都用于探索性和自动化数据分析。应用领域包括网络安全、复杂系统分析和个性化医疗。对于这些领域中的典型数据分析任务,存在无数已知的算法。例如,图中的社区识别问题,指的是自动识别图中连接良好的顶点组,有几十种算法。与矩阵中的奇异值分解类似,存在几种具有不同用例的张量分解。图形算法和张量分解都使用受矩阵计算启发的计算机存储格式。该项目专注于数据分析用例,这些用例产生大规模的图形和张量,需要并行和分布式处理。该项目的创新之处在于确定和开发了跨越多个图计算和张量分解的统一并行算法设计原则。在规划阶段,几个重点研究任务将探索八个统一的主题。该项目旨在开发一个端到端流数据分析系统的基础,其性能可与当前高端工作站和超级计算机上高度调整的静态图形分析基准相媲美。研究人员的多学科专业知识涵盖高性能计算、理论和算法、计算机体系结构以及编程语言和编译器。交叉研究的目标包括编排节点内和节点间通信的通用原则、利用分层并行的多种方法、局部性增强策略和自动性能调整。规划阶段的软件构件可以构成新的数据分析基准的基础。研究人员将把研究成果纳入他们教授的课程中。在规划阶段聘请国家实验室和该行业的专家将有助于巩固未来的大规模努力。调查人员将利用并促进现有的机构项目,扩大对计算研究的参与。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient, out-of-memory sparse MTTKRP on massively parallel architectures
- DOI:10.1145/3524059.3532363
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:A. Nguyen;Ahmed E. Helal;Fabio Checconi;Jan Laukemann;Jesmin Jahan Tithi;Yongseok Soh;Teresa M. Ranadive;F. Petrini;Jee W. Choi
- 通讯作者:A. Nguyen;Ahmed E. Helal;Fabio Checconi;Jan Laukemann;Jesmin Jahan Tithi;Yongseok Soh;Teresa M. Ranadive;F. Petrini;Jee W. Choi
ALTO: adaptive linearized storage of sparse tensors
- DOI:10.1145/3447818.3461703
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Ahmed E. Helal;Jan Laukemann;Fabio Checconi;Jesmin Jahan Tithi;Teresa M. Ranadive;F. Petrini;Jeewhan Choi
- 通讯作者:Ahmed E. Helal;Jan Laukemann;Fabio Checconi;Jesmin Jahan Tithi;Teresa M. Ranadive;F. Petrini;Jeewhan Choi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jee Choi其他文献
Matrix-free SBP-SAT finite difference methods and the multigrid preconditioner on GPUs
无矩阵 SBP-SAT 有限差分方法和 GPU 上的多重网格预处理器
- DOI:
10.1145/3650200.3656614 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexandre Chen;Brittany A. Erickson;J. Kozdon;Jee Choi - 通讯作者:
Jee Choi
Bypassing BigBackground: An efficient hybrid background modeling algorithm for embedded video surveillance
绕过 BigBackground:一种用于嵌入式视频监控的高效混合背景建模算法
- DOI:
10.1109/icdsc.2008.4635687 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
B. Valentine;Jee Choi;S. Apewokin;L. Wills;D. S. Wills - 通讯作者:
D. S. Wills
High-performance lattice QCD for multi-core based parallel systems using a cache-friendly hybrid threaded-MPI approach
使用缓存友好的混合线程 MPI 方法,用于基于多核的并行系统的高性能晶格 QCD
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
M. Smelyanskiy;K. Vaidyanathan;Jee Choi;B. Joó;J. Chhugani;M. Clark;P. Dubey - 通讯作者:
P. Dubey
Real-Time Adaptive Background Modeling for Multicore Embedded Systems
多核嵌入式系统的实时自适应背景建模
- DOI:
10.1007/s11265-008-0298-z - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Apewokin;B. Valentine;Jee Choi;L. Wills;D. S. Wills - 通讯作者:
D. S. Wills
Power and performance modeling for high-performance computing algorithms
- DOI:
- 发表时间:
2015-04 - 期刊:
- 影响因子:0
- 作者:
Jee Choi - 通讯作者:
Jee Choi
Jee Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant