Collaborative Research: DMREF: Design of Superionic Conductors by Tuning Lattice Dynamics
合作研究:DMREF:通过调整晶格动力学设计超离子导体
基本信息
- 批准号:2119273
- 负责人:
- 金额:$ 46.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYSuperionic conductors are solid materials in which a subset of the atoms can flow as though they were in a liquid. These materials could be used in energy technologies such as next-generation rechargeable batteries, fuel-cells, and thermoelectric devices. However, a fundamental understanding of the atomistic mechanisms underlying the outstanding liquid-like behavior of superionic conductors remains elusive. In the spirit of the Materials Genome Initiative (MGI), this project will develop an integrated computational and experimental framework to provide insights into the atomic-scale mechanisms controlling superionic behavior. The project will provide new quantitative understanding of the role of atomic-level disorder and crystal flexibility in the liquid-like behavior of atoms in superionic materials. Advanced computational techniques, validated by state-of-the-art experiments, will further enable predictive modeling, accelerating the current search for new superionic materials. This research project will open new avenues for the design and discovery of efficient materials for novel energy storage and conversion technologies, and in turn, has the potential to help drive the growth of the US economy.TECHNICAL SUMMARYSuperionic conductors are rare materials with part crystalline-part liquid character in which ions can diffuse with high mobilities. This project will rationalize atomistic processes of thermal and mass transport in superionic conductors. This will provide the critical understanding needed to accelerate the discovery and design of superionic materials for improved energy conversion technologies. The research will investigate three design hypotheses. These are that: (1) superionic conductivity is controlled by the thermodynamic state of the mobile sublattice; (2) there is an optimal lattice softness for fast ion conductivity; and (3) superionic conductivity and low thermal conductivity are related by strong anharmonic effects and dynamic sublattice disorder. In the spirit of the Materials Genome Initiative, these hypotheses will be tested by combining state-of-the-art computational modeling and experimental techniques to shed light on how the unusual atomic dynamics of superionic conductors enable fast ionic diffusion and control their thermal transport and thermodynamic properties. A targeted set of superionic compounds will be studied in an investigative loop between theory and experiment, combining neutron and x-ray scattering experiments, thermodynamic and transport measurements, and computer simulations of atomic dynamics using first-principles and machine-learning methods. Additionally, this project will advance the interdisciplinary training of the early-career researchers associated with the project to afford for MGI-based workforce development. Moreover, the project will develop summer workshops, a summer exchange program between the research groups at different universities, and educational online short courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术和超离子导体是固体材料,其中的一部分原子可以像在液体中一样流动。这些材料可以用于能源技术,如下一代充电电池、燃料电池和热电设备。然而,对超离子导体杰出的类液体行为背后的原子机制的基本理解仍然是难以捉摸的。本着材料基因组倡议(MGI)的精神,该项目将开发一个综合的计算和实验框架,以提供对控制超级行为的原子尺度机制的见解。该项目将为原子级无序和晶体柔性在上离子材料中原子的类液体行为中所起的作用提供新的定量理解。先进的计算技术,经过最先进的实验验证,将进一步使预测建模成为可能,加快目前寻找新的超级材料的速度。这一研究项目将为设计和发现用于新的能量存储和转换技术的高效材料开辟新的途径,并反过来具有帮助推动美国经济增长的潜力。技术和高级导体是一种稀有的材料,具有部分结晶-部分液体的性质,离子可以在其中以高迁移率扩散。这个项目将使超离子导体中的热和质量传输的原子过程合理化。这将提供所需的关键理解,以加速发现和设计用于改进能量转换技术的超级材料。这项研究将调查三个设计假设。它们是:(1)快离子导电性受控于可移动亚晶格的热力学状态;(2)快离子导电性存在一个最佳的晶格软度;(3)快离子导电性和低热导率与强非简谐效应和动态亚晶格无序有关。本着材料基因组计划的精神,这些假说将通过结合最先进的计算建模和实验技术进行测试,以阐明超离子导体不同寻常的原子动力学如何实现快速离子扩散,并控制其热传输和热力学性质。一组有针对性的上离子化合物将在理论和实验之间的研究循环中进行研究,结合中子和X射线散射实验、热力学和输运测量,以及使用第一原理和机器学习方法的原子动力学计算机模拟。此外,该项目将推进与该项目相关的早期职业研究人员的跨学科培训,以支付基于MGI的劳动力发展的费用。此外,该项目将开发暑期研讨会,不同大学研究小组之间的暑期交流计划,以及教育在线短期课程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6
- DOI:10.1038/s41563-023-01560-x
- 发表时间:2023-05
- 期刊:
- 影响因子:41.2
- 作者:Q. Ren;M. Gupta;Minxian Jin;Jingxuan Ding;Jiangtao Wu;Zhiwei Chen;Siqi Lin;O. Fabelo;J. Rodríguez-Velamazán;M. Kofu;K. Nakajima;Marcell Wolf;F. Zhu;Jianli Wang;Zhenxiang Cheng;Guohua Wang;Xin-Yi Tong;Y. Pei;O. Delaire;Jie Ma
- 通讯作者:Q. Ren;M. Gupta;Minxian Jin;Jingxuan Ding;Jiangtao Wu;Zhiwei Chen;Siqi Lin;O. Fabelo;J. Rodríguez-Velamazán;M. Kofu;K. Nakajima;Marcell Wolf;F. Zhu;Jianli Wang;Zhenxiang Cheng;Guohua Wang;Xin-Yi Tong;Y. Pei;O. Delaire;Jie Ma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Delaire其他文献
アセトンPLIF法を用いた超音速自由噴流の可視化
使用丙酮 PLIF 方法可视化超音速自由射流
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Takuma Shiga;Takuru Murakami;Takuma Hori;Olivier Delaire;Junichiro Shiomi;畠中和明,廣田光智,齋藤務 - 通讯作者:
畠中和明,廣田光智,齋藤務
Microscopic mechanism of low thermal conductivity in lead terullide
特鲁酸铅低导热率的微观机制
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Takuma Shiga;Takuru Murakami;Takuma Hori;Jie Ma;Olivier Delaire;Keivan Esfarjani;Gang Chen;Junichiro Shiomi - 通讯作者:
Junichiro Shiomi
Liquid-like dynamics in a solid-state lithium electrolyte
固态锂电解质中的类液体动力学
- DOI:
10.1038/s41567-024-02707-6 - 发表时间:
2025-01-06 - 期刊:
- 影响因子:18.400
- 作者:
Jingxuan Ding;Mayanak K. Gupta;Carolin Rosenbach;Hung-Min Lin;Naresh C. Osti;Douglas L. Abernathy;Wolfgang G. Zeier;Olivier Delaire - 通讯作者:
Olivier Delaire
平板間ミニマム流れの周期解
板间最小流量的周期解
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Takuma Shiga;Takuru Murakami;Takuma Hori;Olivier Delaire;and Junichiro Shiomi;板野智昭 - 通讯作者:
板野智昭
Self-compensation induced vacancies for significant phonon scattering in InSb
InSb 中显着声子散射的自补偿诱导空位
- DOI:
10.1016/j.nanoen.2018.03.058 - 发表时间:
2018-06 - 期刊:
- 影响因子:17.6
- 作者:
Jun Mao;Jennifer L Niedziela;Yumei Wang;Yi Xia;Binghui Ge;Zihang Liu;Jiawei Zhou;Zhensong Ren;Weishu Liu;Maria K Y Chan;Gang Chen;Olivier Delaire;Qian Zhang;Zhifeng Ren - 通讯作者:
Zhifeng Ren
Olivier Delaire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 46.23万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 46.23万 - 项目类别:
Standard Grant