DMREF/Collaborative Research: Inverse Design of Architected Materials with Prescribed Behaviors via Graph Based Networks and Additive Manufacturing
DMREF/协作研究:通过基于图形的网络和增材制造对具有规定行为的建筑材料进行逆向设计
基本信息
- 批准号:2119545
- 负责人:
- 金额:$ 37.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A material's force-displacement response, modal response, and wave transmission and absorption response to dynamic loadings, all can be construed as its characteristic fingerprints. The behaviors of materials under dynamic loads that are applied within a fraction of a second remain poorly understood due to the complex, nonlinear interplay between material microstructure, geometry, and applied load. The complexity increases manifold for architected materials, in which topological considerations are paramount to achieve specific responses or functions. Consequently, methodical design of architected materials with optimal dynamic fingerprints is a challenge that has not been adequately addressed. By seamlessly integrating advances in graph network theory, machine learning, numerical simulations, and high-speed additive manufacturing approaches, this Designing Materials to Revolutionize and Engineer our Future (DMREF) award will accelerate the understanding, inverse design, and fabrication of architected materials with tailorable dynamic fingerprints. The outcome will be materials with inversely designed three-dimensional micro-architectures fabricated via desktop additive manufacturing with prescribed behaviors, such as impact shielding and wave transmission. Applications include energy and shock absorption, acoustic wave filtering, stretchable electronics, and other multifunctional material systems. The project will also train graduate and undergraduate students in the new paradigm of autonomous inverse design and additive manufacturing based on desired behaviors. Moreover, demonstration modules, design games, and additive printing activities will be used for outreach to K-12 students.This project will extend graph-based generative machine learning modeling techniques to identify the underlying motifs within architected materials to understand their dynamic behaviors as well as provide an inverse design framework for optimized functional responses. The first step is to develop a graph space model to represent an arbitrary architected material composed of an arbitrarily complex 3D micro-architecture, by size, scale, hierarchy, lattice topology, and material attributes. The next step involves obtaining high-fidelity experimental data and higher-order simulation data with large amounts of lower-order experimental data to accelerate the training and discovery process. A forward graph-based machine learning model will be trained on the combined data for functional response prediction. Lastly, the graph neural network with reinforcement learning will be used to generate graphs with the desired properties based on the forward predictive model. This extensive and experimentally validated framework will be used to discover fundamental knowledge pertaining to structural and dynamic characteristics, which will then be leveraged to inversely design materials with prescribed dynamic fingerprint.This project is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG) and the Division of Information and Intelligent Systems (IIS) in the Directorate for Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料的力-位移响应、模态响应以及对动态载荷的波传输和吸收响应都可以被解释为其特征指纹。由于材料微观结构、几何形状和施加的载荷之间复杂的非线性相互作用,在几分之一秒内施加的动态载荷下材料的行为仍然知之甚少。复杂性增加了多方面的架构材料,其中拓扑考虑是至关重要的,以实现特定的响应或功能。因此,具有最佳动态指纹的结构材料的有条理的设计是一个尚未得到充分解决的挑战。通过无缝集成图形网络理论,机器学习,数值模拟和高速增材制造方法的进步,这个设计材料革命和工程师我们的未来(DMREF)奖将加速理解,逆向设计和制造具有可定制动态指纹的建筑材料。其结果将是通过桌面增材制造制造具有规定行为(如冲击屏蔽和波传输)的逆向设计三维微结构的材料。应用包括能量和减震,声波过滤,可拉伸电子产品和其他多功能材料系统。该项目还将培训研究生和本科生在自主逆向设计和基于期望行为的增材制造的新范式。此外,示范模块,设计游戏和增材打印活动将用于K-12学生的推广。该项目将扩展基于图形的生成机器学习建模技术,以识别建筑材料中的潜在图案,以了解其动态行为,并提供优化功能响应的逆向设计框架。第一步是开发一个图形空间模型来表示由任意复杂的3D微架构组成的任意建筑材料,通过大小,尺度,层次结构,晶格拓扑和材料属性。下一步涉及获得高保真实验数据和高阶仿真数据以及大量低阶实验数据,以加速训练和发现过程。基于图的前向机器学习模型将在组合数据上进行训练,用于功能反应预测。最后,将使用具有强化学习的图神经网络来基于前向预测模型生成具有所需属性的图。这个广泛的和实验验证的框架将用于发现与结构和动态特性有关的基本知识,然后将利用这些知识来逆向设计具有规定动态指纹的材料。工程局(ENG)和信息和智能系统部(IIS)的机械和制造创新(CMMI)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the elastodynamic properties of octet truss-based architected metamaterials
- DOI:10.1063/5.0140673
- 发表时间:2023-04
- 期刊:
- 影响因子:4
- 作者:M. Oudich;Edward Huang;Hyeonu Heo;Zhenpeng Xu;Huachen Cui;N. J. Gerard;X. Zheng;Yun Jing
- 通讯作者:M. Oudich;Edward Huang;Hyeonu Heo;Zhenpeng Xu;Huachen Cui;N. J. Gerard;X. Zheng;Yun Jing
Tailoring Structure‐Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review
- DOI:10.1002/adfm.202206309
- 发表时间:2022-07
- 期刊:
- 影响因子:19
- 作者:M. Oudich;N. J. Gerard;Yuanchen Deng;Yun Jing
- 通讯作者:M. Oudich;N. J. Gerard;Yuanchen Deng;Yun Jing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Jing其他文献
Far-Field Subwavelength Acoustic Computational Imaging with a Single Detector
使用单个探测器的远场亚波长声学计算成像
- DOI:
10.1103/physrevapplied.18.014046 - 发表时间:
2022-07 - 期刊:
- 影响因子:4.6
- 作者:
Yuan Tian;Hao Ge;Xiu-Juan Zhang;Xiang-Yuan Xu;Ming-Hui Lu;Yun Jing;Yan-Feng Chen - 通讯作者:
Yan-Feng Chen
Observation of higher-order exceptional points in a non-local acoustic metagrating
- DOI:
https://doi.org/10.1038/s42005-021-00779-x - 发表时间:
2021 - 期刊:
- 影响因子:5.5
- 作者:
Xinsheng Fang;Nikhil J R K Gerard;王旭;Yun Jing;Yong Li - 通讯作者:
Yong Li
A fast marching method based back projection algorithm for photoacoustic tomography in heterogeneous media
基于快速行进法的异质介质光声层析反投影算法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Tianren Wang;Yun Jing - 通讯作者:
Yun Jing
Engineered moiré photonic and phononic superlattices
人工莫尔光子和声子超晶格
- DOI:
10.1038/s41563-024-01950-9 - 发表时间:
2024-08-30 - 期刊:
- 影响因子:38.500
- 作者:
Mourad Oudich;Xianghong Kong;Tan Zhang;Chengwei Qiu;Yun Jing - 通讯作者:
Yun Jing
Simultaneous Observation of a Topological Edge State and Exceptional Point in an Open and Non-Hermitian Acoustic System
开放非厄米声学系统中拓扑边缘态和异常点的同时观测
- DOI:
10.1103/physrevlett.121.124501 - 发表时间:
2018 - 期刊:
- 影响因子:8.6
- 作者:
Weiwei Zhu;Xinsheng Fang;Dongting Li;Yong Sun;Yong Li;Yun Jing;Hong Chen - 通讯作者:
Hong Chen
Yun Jing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Jing', 18)}}的其他基金
I-Corps: Quiet car wheel technology
I-Corps:静音车轮技术
- 批准号:
2311803 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Twisted Bilayer Sonic Crystal: A New Playground for Twistronics
扭曲双层声波晶体:Twistronics 的新游乐场
- 批准号:
2039463 - 财政年份:2021
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Exceptional Points for Sound Control with Non-Hermitian Acoustic Metasurfaces
合作研究:利用非厄米特声学超表面设计声音控制的特殊点
- 批准号:
1951221 - 财政年份:2020
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 37.63万 - 项目类别:
Standard Grant