CAREER: Higher Brauer Groups and Topological Azumaya Algebras

职业:高等布劳尔群和拓扑 Azumaya 代数

基本信息

  • 批准号:
    2120005
  • 负责人:
  • 金额:
    $ 45.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-15 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

This award is focused on algebraic geometry and algebraic topology, two areas of modern mathematics. Algebraic geometry has ancient origins with many connections to real-world problems. Its goal is to understand the geometry of solutions sets of polynomial equations, equations of central importance in various disciplines, such as theoretical physics, cryptography, and number theory. Algebraic topology on the other hand developed more recently, in the 19th century, and aims to study a general notion of shape, less rigid than the idea of shape studied in geometry. It has found striking applications in the last decade, for instance to robotics and to the analysis of large data sets, and a recent revolution in the foundations of algebraic topology has broadened its applicability to other fields of pure mathematics. The proposal of the PI will bring the considerable machinery and insight of algebraic topology to bear on several well-known questions and conjectures in algebraic geometry. Some of these questions will be investigated jointly with students as part of undergraduate research projects in the Mathematical Computing Laboratory at UIC, which the PI founded in 2015 with David Dumas and Jan Verschelde. This integration will provide valuable opportunities for students to engage in research and impact ongoing research.The PI will work on several projects at the border of algebraic geometry and algebraic topology. Three projects aim to use various topological methods to understand the Brauer group and Azumaya algebras as well as the role of higher algebraic structures in algebraic geometry. (1) The PI will study (higher) algebraic representatives of étale cohomology classes, generalizing the connection between the Picard and Brauer groups and low-degree cohomology groups. (2) The PI will explore separate applications of motivic homotopy theory and persistent homology to the period-index conjecture with the aim of finding algebraic counterexamples to the conjecture. (3) The PI will explore the Hochschild-Kostant-Rosenberg theorem in characteristic p, specifically focusing on the question of whether or not the local-global spectral sequence for Hochschild homology degenerates at the E_2-page for smooth projective surfaces in characteristic 2.
该奖项侧重于代数几何和代数拓扑,现代数学的两个领域。代数几何有着古老的起源,与现实世界的问题有着许多联系。它的目标是了解多项式方程的解集的几何,这些方程在各个学科中具有核心重要性,如理论物理学,密码学和数论。另一方面,代数拓扑学是在世纪发展起来的,它的目的是研究形状的一般概念,比几何学中研究形状的概念更不严格。在过去的十年中,它已经发现了惊人的应用,例如机器人技术和大型数据集的分析,最近代数拓扑基础的革命已经将其适用性扩展到纯数学的其他领域。PI的建议将带来相当大的机械和洞察力的代数拓扑承担在几个著名的问题和代数几何。其中一些问题将作为UIC数学计算实验室的本科生研究项目的一部分与学生共同研究,该实验室由PI与大卫大仲马和Jan Verschelde于2015年创立。这种整合将为学生提供宝贵的机会,从事研究和影响正在进行的研究。PI将在代数几何和代数拓扑的边界上的几个项目的工作。三个项目旨在使用各种拓扑方法来理解Brauer群和Azumaya代数以及代数几何中高等代数结构的作用。(1)PI将研究étale上同调类的(高等)代数代表,推广Picard和Brauer群与低度上同调群之间的联系。(2)PI将探索动机同伦理论和持久同源性的周期指数猜想的单独应用,目的是找到该猜想的代数反例。(3)PI将探索特征p中的Hochschild-Kostant-Rosenberg定理,特别关注Hochschild同调的局部-全局谱序列是否在特征2中的光滑射影曲面的E_2-page处退化的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Antieau其他文献

David Antieau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Antieau', 18)}}的其他基金

Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
  • 批准号:
    2304723
  • 财政年份:
    2023
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
  • 批准号:
    2152235
  • 财政年份:
    2022
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Cyclotomic Spectra and p-Divisible Groups
分圆谱和 p-可分群
  • 批准号:
    2102010
  • 财政年份:
    2020
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Cyclotomic Spectra and p-Divisible Groups
分圆谱和 p-可分群
  • 批准号:
    2005316
  • 财政年份:
    2020
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
CAREER: Higher Brauer Groups and Topological Azumaya Algebras
职业:高等布劳尔群和拓扑 Azumaya 代数
  • 批准号:
    1552766
  • 财政年份:
    2016
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Continuing Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
  • 批准号:
    1461847
  • 财政年份:
    2014
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
  • 批准号:
    1307505
  • 财政年份:
    2013
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Topological methods for Azumaya algebras
Azumaya 代数的拓扑方法
  • 批准号:
    1358832
  • 财政年份:
    2013
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
  • 批准号:
    24K16704
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
De Montfort University Higher Education Corporation and FABRIC Charitable Incorporated Organisation KTP 23_24 R1
德蒙福特大学高等教育公司和 FABRIC 慈善法人组织 KTP 23_24 R1
  • 批准号:
    10071520
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Knowledge Transfer Partnership
Investigating the Outcome of EMI Programs in Higher Education Context: Cases from Japan and Mongolia
调查高等教育背景下 EMI 项目的成果:日本和蒙古的案例
  • 批准号:
    24K16709
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
  • 批准号:
    2346635
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
  • 批准号:
    2400089
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
  • 批准号:
    DP240100963
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Discovery Projects
University of Portsmouth Higher Education Corporation and Entec International Limited KTP 23_24 R1
朴茨茅斯大学高等教育公司和 Entec International Limited KTP 23_24 R1
  • 批准号:
    10070881
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Knowledge Transfer Partnership
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
  • 批准号:
    2350423
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
CC* Planning: Leading Advanced University Computing for Higher Education (LAUNCH) MSU
CC* 规划:领先的高等教育先进大学计算 (LAUNCH) MSU
  • 批准号:
    2346088
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Standard Grant
TransformUs Higher Ed: Developing confident, 'classroom-ready' graduates
TransformUs 高等教育:培养自信、“为课堂做好准备”的毕业生
  • 批准号:
    DE240100452
  • 财政年份:
    2024
  • 资助金额:
    $ 45.49万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了