Collaborative Research: SaTC: CORE: Large: Privacy-Preserving Abuse Prevention for Encrypted Communications Platforms
协作研究:SaTC:核心:大型:加密通信平台的隐私保护滥用预防
基本信息
- 批准号:2120497
- 负责人:
- 金额:$ 37.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will address the immense challenge of mitigating abuse in communication services where interactions between the parties are private and fully encrypted. Such services have become popular for individual and group communications, and their security features help protect individual privacy and rights. But these platforms are also used for harmful and illegal purposes such as organizing violent activities or sharing child sexual abuse materials. In addition, users on these platforms are subject to abuse such as hate, harassment, and misinformation. The encryption used by such services makes detecting and blocking harmful content extremely difficult. This work will develop new trust and safety approaches to enable secure and trustworthy communications that preserve privacy while mitigating abuses. The project will aim to provide (1) technical advances in developing novel cryptographic tools and techniques to support mitigation of abuse; (2) human-centered advances in understanding perceptions and expectations of privacy and abuse mitigation, as well as creating novel designs for individual and community interactions; and (3) legal, policy, and regulatory advances to support and enable these abuse-mitigating features.The research effort is organized around two overlapping thrusts: algorithmic-driven approaches and community-driven approaches. The algorithmic approaches will focus on developing better cryptographic tools for privacy-aware abuse detection in encrypted settings, such as detection of viral, fast-spreading content. These designs will be informed by a human-centered approach to understanding people's privacy expectations, and supported by legal analyses that ensure tools are consistent with applicable privacy and content-moderation laws. In the second thrust, the community approaches will focus on providing communities with the tools they need to address abuse challenges in encrypted settings. Given the challenges and pitfalls of centralized approaches for abuse mitigation, the project will explore building distributed capabilities to support communities and groups on these platforms. An importantly ingredient is working with communities and community moderators to understand their needs, as well as guide design of legal and policy frameworks to support new approaches.Taken together, this project will address the challenge of abuse mitigation on encrypted platforms, while preserving privacy protections for individuals and communities. It will especially consider the perspectives of individuals and communities most in need of privacy and abuse protection. The work, if successful, should fuel new innovations in the design of encrypted messaging platforms, and in basic research in cryptography, human-centered design, and Internet law.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将解决缓解滥用在交流服务中的巨大挑战,在各方之间的互动是私人且完全加密的。此类服务在个人和团体沟通中变得很受欢迎,其安全功能有助于保护个人隐私和权利。但是这些平台也用于有害和非法目的,例如组织暴力活动或共享儿童性虐待材料。此外,这些平台上的用户受到滥用,例如仇恨,骚扰和错误信息。此类服务使用的加密使检测和阻止有害内容极为困难。这项工作将开发新的信任和安全方法,以实现安全且值得信赖的通信,在减轻滥用虐待的同时保留隐私。该项目旨在(1)开发新型的加密工具和技术以支持缓解滥用的技术进展; (2)以人为本的理解隐私和滥用滥用的看法和期望以及为个人和社区互动创造新颖的设计; (3)法律,政策和监管进步支持和实现这些滥用滥用的特征。研究工作是围绕两个重叠的推力组织的:算法驱动的方法和社区驱动的方法。 算法方法将着重于开发更好的加密工具,以在加密设置中(例如检测病毒,快速播放的内容)中的隐私感知滥用检测。这些设计将通过以人为本的方法来理解人们的隐私期望,并得到确保工具与适用的隐私和内容修改法律一致的法律分析的支持。在第二个推力中,社区方法将着重于为社区提供应对加密环境中滥用挑战所需的工具。鉴于集中式减轻滥用方法的挑战和陷阱,该项目将探索建立分布式能力,以支持这些平台上的社区和群体。一个重要的成分是与社区和社区主持人合作,以了解其需求,并指导法律和政策框架的设计以支持新方法。与之共同解决,该项目将解决缓解加密平台的滥用挑战,同时保留对个人和社区的隐私保护。特别会考虑最需要隐私和虐待保护的个人和社区的观点。这项工作,如果成功的话,应该在加密消息平台的设计中加剧新的创新,以及以人为中心的设计和互联网法律的基础研究,这奖反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来通过评估来支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Skin Deep: Investigating Subjectivity in Skin Tone Annotations for Computer Vision Benchmark Datasets
- DOI:10.1145/3593013.3594114
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Teanna Barrett;Quan Ze Chen;Amy X. Zhang
- 通讯作者:Teanna Barrett;Quan Ze Chen;Amy X. Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Zhang其他文献
Preliminary mapping of HopZ1b resistance-associated loci in Arabidopsis thaliana via EMS and ecotype screens
- DOI:
- 发表时间:
2016-11 - 期刊:
- 影响因子:0
- 作者:
Amy Zhang - 通讯作者:
Amy Zhang
A review of principles in design and usability testing of tactile technology for individuals with visual impairments
视觉障碍人士触觉技术的设计和可用性测试原则回顾
- DOI:
10.1080/10400435.2016.1176083 - 发表时间:
2017 - 期刊:
- 影响因子:1.8
- 作者:
Emily L. Horton;R. Renganathan;Bryan N. Toth;Alexa J. Cohen;Andrea V. Bajcsy;A. Bateman;Mathew C. Jennings;Anish Khattar;Ryan S. Kuo;Felix A. Lee;Meilin K. Lim;Laura W. Migasiuk;Amy Zhang;Oliver K. Zhao;Márcio A. Oliveira - 通讯作者:
Márcio A. Oliveira
Visual outcomes of combined cataract and minimally invasive glaucoma surgery.
白内障和微创青光眼联合手术的视力结果。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.8
- 作者:
S. Sarkisian;N. Radcliffe;P. Harasymowycz;S. Vold;Thomas D. Patrianakos;Amy Zhang;L. Herndon;J. Brubaker;M. Moster;Brian A. Francis - 通讯作者:
Brian A. Francis
A Deep Learning Approach to Population Based COVID-19 Case Prediction in the US
美国基于人群的 COVID-19 病例预测的深度学习方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Sameer Sundrani;Amy Zhang - 通讯作者:
Amy Zhang
Learning Action-based Representations Using Invariance
使用不变性学习基于动作的表示
- DOI:
10.48550/arxiv.2403.16369 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Max Rudolph;Caleb Chuck;Kevin Black;Misha Lvovsky;S. Niekum;Amy Zhang - 通讯作者:
Amy Zhang
Amy Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Zhang', 18)}}的其他基金
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant
CAREER: Tools for User and Community-Led Social Media Curation
职业:用户和社区主导的社交媒体管理工具
- 批准号:
2236618 - 财政年份:2023
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant
Collaborative Research: DASS: Transitioning open-source software projects to accountable community governance
合作研究:DASS:将开源软件项目转变为负责任的社区治理
- 批准号:
2217653 - 财政年份:2022
- 资助金额:
$ 37.14万 - 项目类别:
Standard Grant
相似国自然基金
钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
- 批准号:52371195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
- 批准号:82370525
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
- 批准号:62371132
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
- 批准号:52302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 37.14万 - 项目类别:
Continuing Grant