Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
基本信息
- 批准号:2120544
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in large-scale machine learning (ML) promise a range of benefits to society, but also introduce new risks. One major risk is a loss of privacy for the individuals whose data powers the machine learning algorithms. There are now convincing demonstrations that algorithms for machine learning can reveal sensitive information about individuals in their training data by memorizing specific strings of sensitive text such as bank account numbers or through membership-inference attacks. In the recent years, a framework called differential privacy---a mathematically principled, quantitative notion of what it means for an algorithm to ensure privacy for the individuals who contribute training data---has led to significant progress towards privacy in machine learning. This progress offers a proof-of-concept that we can hope to enjoy some of the benefits of using machine learning on sensitive data, while measuring and limiting breaches of confidentiality. This project will investigate and begin to make some of the fundamental advances that are necessary to make differentially private ML a viable technology. The focus will be on laying the groundwork for differentially private ML for entire systems, rather than for standalone tasks, which have been the focus of prior work. This project team comprising researchers with a broad range of expertise in ML, algorithms, systems, and cybersecurity, has planned a set of education tasks: public-facing set of course materials on differentially private machine learning and statistics and and an undergraduate-level textbook on differential privacy.This project includes three technical thrusts that will lay the groundwork for future efforts to build private ML systems. The first thrust will be to improve the foundational algorithms that enable differentially private ML on high-dimensional data. The second thrust will be to build a bridge between algorithms for standalone ML tasks and algorithms for systems-level workloads of ML tasks, by developing differentially private algorithms for training many personalized models, which is a paradigmatic workload in ML. The final thrust will consist of empirical work on auditing differentially private ML methods to understand how the real-world privacy costs compare to those predicted by the theory of differential privacy when these algorithms are used as part of realistic workloads, such as models that are continually updated with new data. This privacy auditing will also facilitate detecting unwanted memorization of training data in machine learning, and also provide more quantitative approaches to auditing differentially private algorithms based on membership-inference and data poisoning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模机器学习(ML)的最新进展为社会带来了一系列好处,但也带来了新的风险。一个主要的风险是,为机器学习算法提供数据的个人隐私的丧失。现在有令人信服的证据表明,机器学习算法可以通过记忆特定的敏感文本字符串(如银行账号)或通过成员推理攻击,在训练数据中揭示个人的敏感信息。近年来,一个名为“差分隐私”(differential privacy)的框架在机器学习领域取得了重大进展。微分隐私是一种数学上有原则的定量概念,它说明了算法确保提供训练数据的个人隐私的意义。这一进展提供了一个概念验证,我们可以希望在测量和限制违反机密性的同时,享受在敏感数据上使用机器学习的一些好处。该项目将调查并开始取得一些基本进展,这些进展是使差异化私有ML成为可行技术所必需的。重点将是为整个系统的不同私有ML奠定基础,而不是为独立的任务奠定基础,这是之前工作的重点。这个项目团队由在机器学习、算法、系统和网络安全方面具有广泛专业知识的研究人员组成,他们计划了一系列教育任务:面向公众的一套关于差异私有机器学习和统计的课程材料,以及一本关于差异隐私的本科教科书。该项目包括三个技术重点,将为未来构建私有ML系统奠定基础。第一个重点将是改进基础算法,使高维数据上的差异私有ML成为可能。第二个重点将是通过开发用于训练许多个性化模型的不同私有算法,在独立机器学习任务的算法和机器学习任务的系统级工作负载的算法之间建立桥梁。最后的重点将包括审计差异私有ML方法的实证工作,以了解当这些算法被用作现实工作负载的一部分时,现实世界的隐私成本与差分隐私理论预测的隐私成本相比如何,例如不断更新新数据的模型。这种隐私审计还将有助于检测机器学习中不需要的训练数据记忆,并提供更多的定量方法来审计基于成员推理和数据中毒的差异隐私算法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roxana Geambasu其他文献
How to Combine Membership-Inference Attacks on Multiple Updated Machine Learning Models
如何结合对多个更新的机器学习模型的成员推理攻击
- DOI:
10.56553/popets-2023-0078 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matthew Jagielski;Stanley Wu;Alina Oprea;Jonathan Ullman;Roxana Geambasu - 通讯作者:
Roxana Geambasu
Sunlight: Fine-grained Targeting Detection at Scale with Statistical Confidence
Sunlight:具有统计可信度的大规模细粒度目标检测
- DOI:
10.1145/2810103.2813614 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mathias Lécuyer;Riley Spahn;Yannis Spiliopolous;A. Chaintreau;Roxana Geambasu;Daniel J. Hsu - 通讯作者:
Daniel J. Hsu
New Directions for Self-Destructing Data Systems
自毁数据系统的新方向
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Roxana Geambasu;Tadayoshi Kohno;A. Krishnamurthy;A. Levy;H. Levy;P. Gardner;Vinnie Moscaritolo - 通讯作者:
Vinnie Moscaritolo
How to Combine Membership-Inference Attacks on Multiple Updated Models
如何结合对多个更新模型的成员推理攻击
- DOI:
10.48550/arxiv.2205.06369 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew Jagielski;Stanley Wu;Alina Oprea;Jonathan Ullman;Roxana Geambasu - 通讯作者:
Roxana Geambasu
Experiences with formal specification of fault-tolerant file systems
具有容错文件系统正式规范的经验
- DOI:
10.1109/dsn.2008.4630075 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Roxana Geambasu;A. Birrell;J. MacCormick - 通讯作者:
J. MacCormick
Roxana Geambasu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roxana Geambasu', 18)}}的其他基金
TWC: TTP Option: Medium: Scalable Web Transparency: New Scientific Building Blocks, Tools, and Measurements to Tame the Data-Driven Web
TWC:TTP 选项:中:可扩展的网络透明度:驯服数据驱动网络的新科学构建模块、工具和测量
- 批准号:
1514437 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: New Abstractions for Sensitive Data Management in Modern Operating Systems
职业:现代操作系统中敏感数据管理的新抽象
- 批准号:
1351089 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant














{{item.name}}会员




