Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning

协作研究:CompCog:直观物理推理的对抗性协作研究

基本信息

  • 批准号:
    2121102
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

People are able to reason about the world in amazingly complex ways, yet we consider these capacities part of simple “common sense,” generally shared across individuals and cultures. We toss and catch balls, stack dishes in the sink, and pour a morning cup of coffee with almost no effort. Yet the cognitive systems that support these capabilities are not well understood; even our most advanced attempts to reverse engineer them in robots fall short of human-level efficiency or flexibility. This grant was designed as an “adversarial collaboration” to bring together scientists from two different sides of a critical debate about the nature of human physical reasoning abilities. One theory (championed by the MIT PIs) suggests that this physical reasoning is based on a cognitive system that allows people to simulate what might happen next, similar to how physics engines for video games are used to predict what will happen next in those scenes. While this theory has provided many successful explanations of human behavior, including making precise predictions about how people think Jenga towers will fall, or where they think balls flying through the air will land, another growing body of research (led by the NYU PIs) has demonstrated many instances where the simulation theory cannot adequately describe what people do, but where simpler and approximate “rules-of-thumb” (even inaccurate ones) can. Because human physical reasoning is unlikely to be purely simulation or purely based on simplified rules, a team of experts from both sides of this debate will be crucial for advancing our understanding of the cognitive processes that underlie these reasoning capabilities. Towards reconciling these views, this grant advances the idea that consideration of known human limitations -- e.g., in memory or attention -- can explain the processes that people use when reasoning about the physical world. The goal is to integrate these constraints into a more complete theory of human reasoning that can account for both our failures and our successes in comprehending the physical world. True understanding of these processes will require “reverse engineering” human cognition and perception by designing computational models with similar limitations and capabilities to people. These scientific models may provide insight for researchers in AI and robotics who are interested in designing systems that interact with the world like people, including self-driving cars or the control of prosthetic limbs. Furthermore, exploring how people learn and reason about physics may provide new approaches for physics education. Finally, studying and modeling these facets of physical reasoning will require developing extensible tools, which will be released as open-source software to open up the research into human physical reasoning to a wider set of scientists.This project studies and proposes to resolve tensions between theories of human physical reasoning that suggest that it is based on relatively accurate simulatable mental models, and those that suggest it is based on heuristics and other qualitative forms of reasoning. The research includes experiments related to those that have been used to demonstrate simulation theory, but modified to induce shortcuts in physical reasoning in two broadly different ways. Aim 1 experiments consider scenarios that are expected to run into human resource limitations, either in attention, memory, or time – for instance, asking people to predict the stability of complex towers of blocks with too many pieces to track individually. Aim 2 experiments consider scenarios that could be reasoned about with simulation, but could more easily be reasoned about with simple rules or heuristics – for instance, studying how people use rules like “the heavier side will tip over” when judging which direction a balance beam stacked with objects will fall. Human behavior in these experiments is examined for deviations from pure simulation theory in line with the expected resource limitations (e.g., using rules, focusing on a subset of objects, or representing objects more coarsely), and computational models are developed to explain this behavior. These models are designed around the framework of “resource-rational” cognition, which suggests that people deploy limited cognitive resources in a way that efficiently solves the problems they encounter. The behavioral results and models together allow investigation into (a) whether and when people’s physical reasoning is constrained by resource limitations, and (b) the types of shortcuts people take to circumvent these limitations. Performing this research requires developing an integrated software suite for designing experiments and modeling across a wide variety of physical scenarios. Designing these integrated packages typically requires a large set of technologies -- physics simulators, graphics engines, computational modeling methods -- that are outside the reach of most psychologists, which in turn limits research into human physical reasoning. The PIs are in a unique position to contribute here because their laboratories are focused on computational models of psychology and they have an extensive track record of developing open-source software used by multiple research groups worldwide. The software suite used in this grant is designed to be open-sourced and shared with the broader research community to facilitate further research into human physical reasoning without requiring extensive knowledge of the underlying technologies.This work was supported by SBE/BCS Perception, Action, and Cognition, EHR Core Research (ECR), and CISE/IIS Robust Intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们能够以令人惊讶的复杂方式推理世界,但我们认为这些能力是简单的“常识”的一部分,通常在个人和文化中共享。我们抛球接球,在水池里叠盘子,早上倒一杯咖啡,几乎毫不费力。然而,支持这些能力的认知系统还没有得到很好的理解;即使是我们最先进的尝试,对机器人进行逆向工程,也达不到人类水平的效率或灵活性。这项拨款被设计为一项“对抗性合作”,目的是将来自两个不同方面的科学家聚集在一起,就人类物理推理能力的本质进行批判性辩论。一种理论(由麻省理工学院pi支持)认为,这种物理推理是基于一个认知系统,它允许人们模拟接下来可能发生的事情,类似于电子游戏的物理引擎用来预测这些场景中接下来会发生什么。虽然这个理论已经为人类行为提供了许多成功的解释,包括精确预测人们认为叠叠塔会如何落下,或者他们认为空中飞过的球会落在哪里,但另一个不断增长的研究机构(由纽约大学的pi领导)已经证明了许多例子,模拟理论不能充分描述人们的行为,但更简单和近似的“经验法则”(即使是不准确的)可以。因为人类的物理推理不太可能是纯粹的模拟或纯粹基于简化的规则,一个来自辩论双方的专家团队对于促进我们对这些推理能力背后的认知过程的理解至关重要。为了调和这些观点,这项资助提出了这样一种观点,即考虑已知的人类局限性——例如,在记忆或注意力方面——可以解释人们在推理物理世界时使用的过程。我们的目标是将这些限制整合到一个更完整的人类推理理论中,这个理论可以解释我们在理解物理世界时的失败和成功。要真正理解这些过程,需要通过设计与人类具有类似限制和能力的计算模型,对人类的认知和感知进行“逆向工程”。这些科学模型可能会为人工智能和机器人领域的研究人员提供见解,他们对设计像人一样与世界互动的系统感兴趣,包括自动驾驶汽车或假肢控制。此外,探索人们如何学习和推理物理可能为物理教育提供新的途径。最后,研究和建模物理推理的这些方面将需要开发可扩展的工具,这些工具将作为开源软件发布,向更广泛的科学家开放对人类物理推理的研究。该项目研究并提出解决人类物理推理理论之间的紧张关系,这些理论认为它是基于相对准确的可模拟的心理模型,而那些理论认为它是基于启发式和其他定性形式的推理。这项研究包括与那些用来证明模拟理论的实验相关的实验,但经过修改,以两种截然不同的方式在物理推理中引出捷径。Aim 1实验考虑的是预期会遇到人力资源限制的场景,无论是在注意力、记忆还是时间上——例如,要求人们预测复杂的积木塔的稳定性,这些积木塔有太多的碎片,无法单独追踪。目标2实验考虑的场景可以用模拟来推理,但可以更容易地用简单的规则或启发式来推理——例如,研究人们如何使用“较重的一边会翻倒”这样的规则来判断堆叠物体的平衡木会朝哪个方向倒。在这些实验中,根据预期的资源限制(例如,使用规则,关注对象的子集,或更粗略地表示对象),检查人类行为是否偏离纯模拟理论,并开发计算模型来解释这种行为。这些模型是围绕“资源理性”认知的框架设计的,即人们以有效解决他们遇到的问题的方式部署有限的认知资源。行为结果和模型结合在一起,可以调查(a)人们的物理推理是否以及何时受到资源限制的约束,以及(b)人们为规避这些限制而采取的捷径类型。进行这项研究需要开发一个集成的软件套件,用于设计各种物理场景的实验和建模。设计这些集成的软件包通常需要大量的技术——物理模拟器、图形引擎、计算建模方法——这是大多数心理学家无法达到的,这反过来又限制了对人类物理推理的研究。pi在这方面的贡献是独一无二的,因为他们的实验室专注于心理学的计算模型,并且他们在开发全球多个研究小组使用的开源软件方面有着广泛的记录。这项拨款中使用的软件套件是开源的,并与更广泛的研究社区共享,以促进对人类物理推理的进一步研究,而不需要广泛的底层技术知识。这项工作得到了SBE/BCS感知、行动和认知、EHR核心研究(ECR)和CISE/IIS鲁棒智能的支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inferring the existence of objects from their physical interactions
从物体的物理相互作用推断物体的存在
Limits on simulation approaches in intuitive physics
  • DOI:
    10.1016/j.cogpsych.2021.101396
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    E. Ludwin-Peery;Neil R. Bramley;E. Davis;T. Gureckis
  • 通讯作者:
    E. Ludwin-Peery;Neil R. Bramley;E. Davis;T. Gureckis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd Gureckis其他文献

Multiplicity of Equilibria and Information Structures in Empirical Games: Challenges and Prospects Session at the 9 Triennial Choice Symposium
经验博弈中的均衡多重性和信息结构:第九届三年一度选择研讨会的挑战与前景分会场
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ron N. Borkovsky co;Paul B. Ellickson;Todd Gureckis;Andrew Sweeting
  • 通讯作者:
    Andrew Sweeting

Todd Gureckis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd Gureckis', 18)}}的其他基金

CompCog: Towards a computational cognitive science of helping
CompCog:迈向帮助的计算认知科学
  • 批准号:
    2021060
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
NCS-FO: Using computational cognitive neuroscience to predict and optimize memory
NCS-FO:利用计算认知神经科学来预测和优化记忆
  • 批准号:
    1631436
  • 财政年份:
    2016
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
CAREER: The Role of Self-Directed Learning in Facilitating Concept Acquisition: Advancing Research and Training in the Cognitive Science of Learning
职业:自主学习在促进概念习得中的作用:推进学习认知科学的研究和培训
  • 批准号:
    1255538
  • 财政年份:
    2013
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235362
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235363
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
  • 批准号:
    2121009
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition
合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性
  • 批准号:
    2043903
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition
合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性
  • 批准号:
    2043950
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
  • 批准号:
    2020914
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
  • 批准号:
    2020945
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Achieving Analogical Reasoning via Human and Machine Learning
合作研究:CompCog:通过人类和机器学习实现类比推理
  • 批准号:
    1827374
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了