Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership
合作研究:HDR DSC:数据科学培训和实践:通过学术和工业合作培养多元化的劳动力
基本信息
- 批准号:2123366
- 负责人:
- 金额:$ 75.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A significant number of modern scientific studies rely upon processing and analyzing a large amount of data for information extraction, scientific discovery, and decision making. This motivates the need for training a new generation of data scientists with interdisciplinary skills and a deep understanding of appropriate and applicable data analysis methods, as well as the ability to communicate the outcomes of the scientific inquiry. Historically, a considerable number of students graduating from traditional programs in statistics, mathematics, and computer science are not prepared to handle the emerging challenges of data-intensive problems. To address this issue, this project aims to develop a cross-disciplinary curricular, research, and career preparation program in data science. Moreover, it will create a paradigm for taking data science training from academia into real-world applications through close partnership with industry, government, and non-profit organizations. This project will have a broad societal impact by creating a diverse community of learners, equipped with the required skills to join the workforce. Through engaging students selected from a pool of highly diverse populations in STEM areas, this project, California Data Experience Transformation (CADET), will facilitate data science training via curriculum development, hands-on experiences, and close interactions with both academic and non-academic organizations. The CADET project gives rise to the creation of an integrative, dialectical, and interactive ecosystem between the University of California at Irvine, California State University at Fullerton, and Cypress College. These institutions represent the three tiers of higher learning in California, namely, University of California, spearheading research and discovery; California State University, combining research and pedagogy; and Community College, offering two-year preparatory programs. The primary components of the CADET project include generating data science opportunities for underrepresented STEM majors, developing and implementing modern data science curricula at the three participating institutes and disseminating them to other institutions, and finally creating a gateway to diverse career opportunities through mentoring and direct involvement in real-world projects. More than 120 CADET scholars will participate in a host of activities including a summer bootcamp, team science training, weekly seminars, and a collaborative research project, all of which will lead to presentations at symposiums and conferences. Ultimately, through implementing new curricula and student and faculty training, the CADET project will establish a data science culture across STEM disciplines that extends beyond the lifetime of this award.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量的现代科学研究依赖于对大量数据的处理和分析来进行信息提取、科学发现和决策。这激发了对培养新一代数据科学家的需求,他们具有跨学科技能,对适当和适用的数据分析方法有深刻的理解,以及沟通科学探究结果的能力。从历史上看,相当多从统计学、数学和计算机科学等传统专业毕业的学生没有准备好应对数据密集型问题的新挑战。为了解决这个问题,本项目旨在开发一个跨学科的课程、研究和数据科学的职业准备计划。此外,它将创建一个范例,通过与行业、政府和非营利组织的密切合作,将数据科学培训从学术界带入现实世界。该项目将产生广泛的社会影响,创建一个多样化的学习者社区,使他们具备加入劳动力市场所需的技能。通过从STEM领域高度多样化的人群中挑选学生,这个名为“加州数据体验转换”(CADET)的项目将通过课程开发、实践经验以及与学术和非学术组织的密切互动来促进数据科学培训。CADET项目在加州大学欧文分校、加州州立大学富勒顿分校和赛普拉斯学院之间建立了一个综合、辩证和互动的生态系统。这些机构代表了加州高等教育的三个层次,即:带头研究和发现的加州大学(University of California);加州州立大学,研究与教学相结合;和社区学院,提供两年的预备课程。CADET项目的主要组成部分包括为代表性不足的STEM专业学生提供数据科学机会,在三个参与机构开发和实施现代数据科学课程,并将其传播给其他机构,最后通过指导和直接参与现实世界的项目,为多样化的职业机会创造门户。120多名CADET学者将参加一系列活动,包括夏季训练营、团队科学培训、每周研讨会和合作研究项目,所有这些活动都将在研讨会和会议上发表演讲。最终,通过实施新课程以及对学生和教师的培训,CADET项目将建立一种跨越STEM学科的数据科学文化,这种文化将超越该奖项的生命周期。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Current State of Undergraduate Bayesian Education and Recommendations for the Future
- DOI:10.1080/00031305.2022.2089232
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:M. Dogucu;Jingchen Hu
- 通讯作者:M. Dogucu;Jingchen Hu
Content and computing outline of two undergraduate Bayesian courses: Tools, examples, and recommendations
两门本科贝叶斯课程的内容和计算大纲:工具、示例和建议
- DOI:10.1002/sta4.452
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Hu, Jingchen;Dogucu, Mine
- 通讯作者:Dogucu, Mine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Babak Shahbaba其他文献
A scalable reinforcement learning framework inspired by hippocampal memory mechanisms for efficient contextual and sequential decision making
一种受海马体记忆机制启发的可扩展强化学习框架,用于高效的情境和序列决策
- DOI:
10.1038/s41598-025-10586-x - 发表时间:
2025-07-12 - 期刊:
- 影响因子:3.900
- 作者:
Hamed Poursiami;Ayana Moshruba;Keiland W. Cooper;Derek Gobin;Md Abdullah-Al Kaiser;Ankur Singh;Rouhan Noor;Babak Shahbaba;Akhilesh Jaiswal;Norbert J. Fortin;Maryam Parsa - 通讯作者:
Maryam Parsa
MP33-06 COMBINED URINE AND PLASMA BIOMARKERS ARE HIGHLY ACCURATE FOR PREDICTING HIGH GRADE PROSTATE CANCER
- DOI:
10.1016/j.juro.2017.02.1002 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Maher Albitar;Wanlong Ma;Lars Lund;Babak Shahbaba;Edward Uchio;Soren Feddersen;Donald Moylan;Kirk Wojno;Neal Shore - 通讯作者:
Neal Shore
Babak Shahbaba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Babak Shahbaba', 18)}}的其他基金
MODULUS: Data-Driven Mechanistic Modeling of Hierarchical Tissues
MODULUS:分层组织的数据驱动机制建模
- 批准号:
1936833 - 财政年份:2019
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
Theory and practice for exploiting the underlying structure of probability models in big data analysis
在大数据分析中利用概率模型的底层结构的理论与实践
- 批准号:
1622490 - 财政年份:2016
- 资助金额:
$ 75.19万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
- 批准号:
2321574 - 财政年份:2023
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
- 批准号:
2242944 - 财政年份:2022
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123237 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123259 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123486 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123260 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123447 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
- 批准号:
2122991 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123244 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: DS-PATH: Data Science Career Pathways in the Inland Empire)
合作研究:HDR DSC:DS-PATH:内陆帝国的数据科学职业道路)
- 批准号:
2123313 - 财政年份:2021
- 资助金额:
$ 75.19万 - 项目类别:
Continuing Grant