MODULUS: Data-Driven Mechanistic Modeling of Hierarchical Tissues

MODULUS:分层组织的数据驱动机制建模

基本信息

  • 批准号:
    1936833
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

This project will develop new statistical and mathematical models that describe how cells and molecules within cells self organize to perform biological functions within an organism. While it is increasingly feasible to study biological systems as a whole by collecting information across many scales (e.g., cellular and molecular levels), a major challenge in such studies is to properly integrate information from individual components in order to obtain a complete picture of the system. What makes this task even more daunting is the fact that biological systems are typically heterogeneous and dynamic, meaning that the system properties tend to change across individuals, time, and space. For investigating such complex biological systems, this project brings together an interdisciplinary team of data and biological scientists in order to develop and validate a new mathematical framework that combines statistical and mechanistic models together to enable scientists to discover emergent biological phenomena and to understand the rules that govern them. This framework will then specifically be used to investigate hematopoiesis, which is a remarkable biological process responsible for creation and maintenance of blood cells, and involves complex interactions among biochemical and physical events across temporal and spatial scales that are still not well-understood. Additionally, this project will provide undergraduate and graduate students with a true interdisciplinary experience with equal mentorship from data and biological scientists. The overarching objective of this project is to develop a new data-driven framework for investigating complex biological systems that are characterized by heterogeneity, dynamics, and interactions across multiple time and space scales. The investigators will achieve this goal by embedding mechanistic models in a hierarchical Bayesian framework. Hierarchical Bayesian models provide a natural framework for integrating information (as well as prior knowledge) available at different scales. Mechanistic models, on the other hand, provide a flexible framework for modeling heterogeneous and dynamic systems in ways that enable prediction and control. This mathematical framework will be used to develop optimal experimental design strategies in order to elucidate hematopoiesis dynamics, perform new in vivo experiments to produce serially sampled barcoded single-cell gene expression profiles, and analyze the resulting data. Hematopoiesis is an ideal biological process for this modeling framework because 1) cell populations (stem, progenitor, and mature cells) are well-defined, 2) experimental model systems allow for easy manipulation, and 3) it is possible to apply stressors to minimally perturb the system and observe the process of returning to homeostasis/equilibrium. Successful implementation of this project will allow scientists to gain insights into physiologic hematopoiesis. The methodology developed in this project will be transferable to other heterogeneous and dynamic biological systems in developmental biology, ecology, and epidemiology. This award was co-funded by Systems and Synthetic Biology in the Division of Molecular and Cellular Biosciences and the Mathematical Biology Program of the Division of Mathematical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发新的统计和数学模型,描述细胞和细胞内的分子如何在生物体中自我组织以执行生物功能。虽然通过收集多个尺度(如细胞和分子水平)的信息来研究整个生物系统越来越可行,但这类研究的一个主要挑战是如何适当地整合来自各个组成部分的信息,以获得系统的完整图像。使这项任务更加艰巨的是,生物系统通常是异质的和动态的,这意味着系统属性倾向于在个体、时间和空间之间变化。为了研究如此复杂的生物系统,该项目汇集了一个跨学科的数据和生物科学家团队,以开发和验证一个新的数学框架,将统计和机械模型结合在一起,使科学家能够发现新兴的生物现象,并理解控制它们的规则。这一框架将专门用于研究造血,这是一个重要的生物学过程,负责血细胞的产生和维持,涉及跨越时间和空间尺度的生化和物理事件之间的复杂相互作用,目前仍未得到很好的理解。此外,该项目将为本科生和研究生提供真正的跨学科经验,并得到数据和生物科学家的平等指导。该项目的总体目标是开发一个新的数据驱动框架,用于研究复杂的生物系统,这些系统具有异质性、动态性和跨时间和空间尺度的相互作用。研究人员将通过在层次贝叶斯框架中嵌入机制模型来实现这一目标。层次贝叶斯模型为整合不同尺度的信息(以及先验知识)提供了一个自然的框架。另一方面,机制模型提供了一个灵活的框架,以支持预测和控制的方式对异构和动态系统进行建模。该数学框架将用于制定最佳的实验设计策略,以阐明造血动力学,执行新的体内实验,以产生连续采样的条形码单细胞基因表达谱,并分析结果数据。造血是该建模框架的理想生物过程,因为1)细胞群(干细胞、祖细胞和成熟细胞)定义良好,2)实验模型系统易于操作,3)可以应用压力源对系统进行最小的干扰,并观察到恢复稳态/平衡的过程。这个项目的成功实施将使科学家们对生理性造血有更深入的了解。本项目开发的方法将可转移到发育生物学、生态学和流行病学等其他异质和动态生物系统中。该奖项由分子和细胞生物科学部的系统和合成生物学以及数学科学部的数学生物学项目共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The SMAC mimetic LCL-161 selectively targets JAK2V617F mutant cells
  • DOI:
    10.1186/s40164-019-0157-6
  • 发表时间:
    2020-01-02
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Craver, Brianna M.;Thanh Kim Nguyen;Fleischman, Angela G.
  • 通讯作者:
    Fleischman, Angela G.
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neural Networks
  • DOI:
    10.1137/21m1439456
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiwei Lan;Shuyi Li;B. Shahbaba
  • 通讯作者:
    Shiwei Lan;Shuyi Li;B. Shahbaba
Quality of life independently predicts overall survival in myelofibrosis: Key insights from the COntrolled MyeloFibrosis Study with ORal Janus kinase inhibitor Treatment (COMFORT)‐I study
生活质量独立预测骨髓纤维化患者的总体生存率:使用 ORal Janus 激酶抑制剂治疗的控制性骨髓纤维化研究 (COMFORT) 的主要见解 –I 研究
  • DOI:
    10.1111/bjh.18329
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Kosiorek, Heidi E.;Scherber, Robyn M.;Geyer, Holly L.;Verstovsek, Srdan;Langlais, Blake T.;Mazza, Gina L.;Gotlib, Jason;Gupta, Vikas;Padrnos, Leslie J.;Palmer, Jeanne M.
  • 通讯作者:
    Palmer, Jeanne M.
E-Cigarette Exposure Decreases Bone Marrow Hematopoietic Progenitor Cells
  • DOI:
    10.3390/cancers12082292
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ramanathan, Gajalakshmi;Craver-Hoover, Brianna;Fleischman, Angela G.
  • 通讯作者:
    Fleischman, Angela G.
Fecal Microbial Community Composition in Myeloproliferative Neoplasm Patients Is Associated with an Inflammatory State.
  • DOI:
    10.1128/spectrum.00032-22
  • 发表时间:
    2022-06-29
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Babak Shahbaba其他文献

A scalable reinforcement learning framework inspired by hippocampal memory mechanisms for efficient contextual and sequential decision making
一种受海马体记忆机制启发的可扩展强化学习框架,用于高效的情境和序列决策
  • DOI:
    10.1038/s41598-025-10586-x
  • 发表时间:
    2025-07-12
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Hamed Poursiami;Ayana Moshruba;Keiland W. Cooper;Derek Gobin;Md Abdullah-Al Kaiser;Ankur Singh;Rouhan Noor;Babak Shahbaba;Akhilesh Jaiswal;Norbert J. Fortin;Maryam Parsa
  • 通讯作者:
    Maryam Parsa
MP33-06 COMBINED URINE AND PLASMA BIOMARKERS ARE HIGHLY ACCURATE FOR PREDICTING HIGH GRADE PROSTATE CANCER
  • DOI:
    10.1016/j.juro.2017.02.1002
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maher Albitar;Wanlong Ma;Lars Lund;Babak Shahbaba;Edward Uchio;Soren Feddersen;Donald Moylan;Kirk Wojno;Neal Shore
  • 通讯作者:
    Neal Shore

Babak Shahbaba的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Babak Shahbaba', 18)}}的其他基金

Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership
合作研究:HDR DSC:数据科学培训和实践:通过学术和工业合作培养多元化的劳动力
  • 批准号:
    2123366
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Theory and practice for exploiting the underlying structure of probability models in big data analysis
在大数据分析中利用概率模型的底层结构的理论与实践
  • 批准号:
    1622490
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Collaborative R&D
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Discovery Projects
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Fellowship
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了