Collaborative Research: Combined Waves and Currents over Multi-Scale Topography: From Boundary Layer Dynamics to Parameterization

合作研究:多尺度地形上的组合波和流:从边界层动力学到参数化

基本信息

项目摘要

Multiscale bottom topography is ubiquitous in coastal systems. Interactions of surface waves and currents with this topography cause spatial patterns in pressure, velocities, and turbulence production that result in bottom drag, drive mixing, and dissipate wave energy. In most wave and circulation studies these processes are not resolved and are represented in bulk friction parameters, typically derived empirically. Dynamics of wavy flows over multiscale topography are not well understood and there is currently no method for computing friction parameters for waves and currents a priori from multiscale topography properties. This project will examine interactions of surface waves and currents with multiscale bottom topography, to investigate the controlling dynamics and develop appropriate bottom friction parameterization schemes, using modeling of flow over idealized and natural coral reef topography together with theoretical development. Implications for drag, wave dissipation and mixing will be addressed yielding improved understanding and modeling of reefs and similar systems. The project will inform interdisciplinary coral reef work through the PIs’ involvement with the Moorea Coral Reef LTER, and support an early career PI, a post-doc and a PhD student, and provide six undergraduates with research experiences. The project team will also develop and implement new K-12 outreach and education activities. In previous work, the PIs investigated boundary layer dynamics over topography characterized by a single length scale across a parameter range typical of reefs. Those results, along with analyses of reef topography, show that a range of topography length scales (cm - m) are likely to contribute substantially to bottom friction. This project will investigate how different topography length scales act together in multiscale topography to determine dynamics of the combined current and oscillatory flow, total drag on currents, and dissipation of wave energy. Using dynamical regimes for single-scale topography as a guide, the work will investigate the physics of combined waves and currents over multiscale topographies spanning different regimes (inertia-, drag-, stress-dominated) by conducting a series of computational fluid dynamics simulations in which key parameters (wave properties, current, topography length scales scaling properties) are systematically varied. Simulations will include topographies composed of superposed discrete length scales, surfaces with a continuous range of length scales, and reef topographies. Simulations (using OpenFOAM with LES closure) will resolve flow patterns down to roughness element scales. A spatially- and wave- ensemble-averaged Navier-Stokes framework will be applied to simulation results to analyze effects of roughness-element-scale processes on oscillatory and steady flow dynamics, and mechanisms by which energy is lost from waves and current will be quantified. These analyses will form the basis for new parameterizations for wave dissipation and drag on currents over multiscale topography that represent smaller-scale dynamics and can be incorporated into wave and circulation models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多尺度海底地形在海岸系统中普遍存在。表面波和水流与这种地形的相互作用导致压力、速度和湍流产生的空间模式,从而导致底部阻力、驱动混合和耗散波浪能量。在大多数波浪和循环研究中,这些过程没有得到解决,而是用总体摩擦参数来表示,通常是经验推导的。波浪流在多尺度地形上的动力学尚未得到很好的理解,目前还没有方法可以从多尺度地形特性中先验地计算波浪和水流的摩擦参数。该项目将研究表面波和水流与多尺度海底地形的相互作用,研究控制动力学并开发适当的海底摩擦参数化方案,使用理想化和自然珊瑚礁地形的流动建模以及理论发展。对阻力、波浪耗散和混合的影响将得到解决,从而提高对珊瑚礁和类似系统的理解和建模。该项目将通过PI参与Moorea珊瑚礁LTER,为跨学科珊瑚礁工作提供信息,并支持早期职业PI,博士后和博士生,并为六名本科生提供研究经验。项目组还将制定和实施新的K-12外展和教育活动。在以前的工作中,pi研究了地形上的边界层动力学,其特征是跨越典型珊瑚礁的参数范围的单一长度尺度。这些结果以及对珊瑚礁地形的分析表明,一系列地形长度尺度(厘米-米)可能对海底摩擦有很大的影响。该项目将研究不同的地形长度尺度如何在多尺度地形中共同作用,以确定组合电流和振荡流的动力学,电流的总阻力和波浪能量的耗散。以单尺度地形的动力学机制为指导,通过进行一系列计算流体动力学模拟,研究跨不同机制(惯性、阻力、应力主导)的多尺度地形上的组合波和流的物理特性,其中关键参数(波特性、电流、地形长度尺度尺度缩放特性)是系统变化的。模拟将包括由重叠的离散长度尺度组成的地形,具有连续长度尺度范围的表面,以及珊瑚礁地形。模拟(使用带有LES闭包的OpenFOAM)将把流动模式分解为粗糙度元素尺度。将空间和波系平均Navier-Stokes框架应用于模拟结果,以分析粗糙元素尺度过程对振荡和稳定流动动力学的影响,并将量化波浪和电流中能量损失的机制。这些分析将为多尺度地形上的波浪耗散和洋流阻力的新参数化奠定基础,这些参数化代表了较小尺度的动力学,可以纳入波浪和环流模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boundary layer dynamics and bottom friction in combined wave–current flows over large roughness elements
组合波电流流过大粗糙度元素时的边界层动力学和底部摩擦
  • DOI:
    10.1017/jfm.2021.941
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yu, Xiao;Rosman, Johanna H.;Hench, James L.
  • 通讯作者:
    Hench, James L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johanna Rosman其他文献

Johanna Rosman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Johanna Rosman', 18)}}的其他基金

Collaborative Research: Relating Topographic Complexity and Circulation Patterns on Coral Reefs from Colony-Scale to Reef-Scale
合作研究:从珊瑚礁规模到珊瑚礁规模,联系地形复杂性和珊瑚礁环流模式
  • 批准号:
    1435530
  • 财政年份:
    2014
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Idealized simulations of turbulence advected by surface waves: Implications for interpreting turbulence measurements in shallow water
表面波平流湍流的理想化模拟:对解释浅水中湍流测量的影响
  • 批准号:
    1061108
  • 财政年份:
    2011
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319847
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Determining the Impacts of a Combined Historical Watershed and Regional Drought on Coastal Louisiana Wetland Ecohydrology
合作研究:RAPID:确定历史流域和区域干旱对路易斯安那州沿海湿地生态水文学的综合影响
  • 批准号:
    2408853
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Combined Basin Analysis, Isotopic, and Modeling Approach to Reconstruct the LGM through Early Holocene Hydroclimate for Glacial Lake Mojave.
合作研究:利用盆地分析、同位素和建模相结合的方法,通过莫哈韦冰川湖早期全新世水文气候重建末次盛冰期。
  • 批准号:
    2303485
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Combined Basin Analysis, Isotopic, and Modeling Approach to Reconstruct the LGM through Early Holocene Hydroclimate for Glacial Lake Mojave.
合作研究:利用盆地分析、同位素和建模相结合的方法,通过莫哈韦冰川湖早期全新世水文气候重建末次盛冰期。
  • 批准号:
    2303484
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Determining the Impacts of a Combined Historical Watershed and Regional Drought on Coastal Louisiana Wetland Ecohydrology
合作研究:RAPID:确定历史流域和区域干旱对路易斯安那州沿海湿地生态水文学的综合影响
  • 批准号:
    2408854
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了