Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients

协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T

基本信息

项目摘要

This NSF project aims to develop a generalized distributed framework for solving large-scale power grid problems that are both fast and robust in most practical settings. The project will bring transformative change in the future grid operation and planning that depend on tractable large-scale time-domain and steady-state simulations and optimizations for rapid electrification and decarbonization. The project will bring about this transformation by advancing the state-of-the-art in nonlinear programming, physics-inspired graph-partitioning, and combinatorial optimization with submodular type objectives. The intellectual merits of the project include leveraging specialized bordered-block-diagonal structure of grid problems for computational tractability and physics-rooted equivalent-circuit representation of grid models for numerical stability and algorithm performance. The broader impacts of the project include accelerating technologies necessary for the transition to zero-carbon power grids, enabling citizen science efforts, and promoting undergraduate research and education. Zero-carbon electric grid operation and design will require solutions to large computations. These will range from system-wide electromagnetic transient simulations due to the growing penetration of inverter-based resources to large multi-period optimizations due to increasing resource uncertainty. State-of-the-art general methods cannot solve these large simulations and optimizations robustly and efficiently in practical settings due to their sheer size and complexity. We will leverage the underlying specialized properties stemming from the structure and physical behavior of grid problems to address these gaps through three project thrusts. Thrust 1 will build a scalable circuit-theoretic generalized framework to solve bordered-block-diagonal decomposable large nonlinear simulations (NLS) and optimizations (NLPs). Thrust 1 will harness equivalent circuit representations of the underlying problems to achieve project goals. Thrust 2 will introduce a novel metric for analytically quantifying the notion of strength of coupling between various subproblems in a decomposed regime, and Thrust 3 will identify optimal decomposition strategies. The proposed thrusts, while focused on power grids, can revolutionize the solution methodology of large-scale problems in many other domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF项目旨在开发一个通用的分布式框架,用于解决大规模电网问题,在大多数实际环境中既快速又健壮。该项目将为未来的电网运营和规划带来变革性的变化,这些变化取决于易于处理的大规模时域和稳态模拟以及快速电气化和脱碳的优化。该项目将通过推进非线性规划,物理启发的图形划分和具有子模块类型目标的组合优化的最新技术来实现这种转变。该项目的智力优势包括利用专门的边界块对角结构的网格问题的计算易处理性和物理根源的等效电路表示的网格模型的数值稳定性和算法性能。该项目的更广泛影响包括加速向零碳电网过渡所需的技术,促进公民科学工作,以及促进本科生的研究和教育。零碳电网的运行和设计将需要大型计算的解决方案。这些范围将从系统范围的电磁瞬态模拟由于不断增长的渗透逆变器为基础的资源,以大型多周期优化由于增加资源的不确定性。由于其庞大的规模和复杂性,最先进的通用方法无法在实际环境中鲁棒有效地解决这些大型模拟和优化。我们将利用网格问题的结构和物理行为产生的潜在的专门属性,通过三个项目重点来解决这些差距。Thrust 1将建立一个可扩展的电路理论通用框架,以解决有界块对角可分解的大型非线性模拟(NLS)和优化(NLP)。重点1将利用基本问题的等效电路表示来实现项目目标。推力2将引入一种新的度量,用于分析量化分解机制中各种子问题之间耦合强度的概念,推力3将确定最佳分解策略。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amritanshu Pandey其他文献

Robust Convergence of Power Flow Using TX Stepping Method with Equivalent Circuit Formulation
使用 TX 步进方法和等效电路公式实现功率流的鲁棒收敛
The biases of development professionalsCH
发展专业人士的偏见CH
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy McNamara;Amritanshu Pandey;Aayushya Agarwal;L. Pileggi
  • 通讯作者:
    L. Pileggi
Three-phase infeasibility analysis for distribution grid studies
配电网研究的三相不可行性分析
  • DOI:
    10.1016/j.epsr.2022.108486
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    E. Foster;Amritanshu Pandey;L. Pileggi
  • 通讯作者:
    L. Pileggi
Continuous Switch Model and Heuristics for Mixed-Integer Problems in Power Systems
电力系统混合整数问题的连续切换模型和启发式
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aayushya Agarwal;Amritanshu Pandey;Marko Jereminov;Larry Pillegi
  • 通讯作者:
    Larry Pillegi
Towards Practical Physics-Informed ML Design and Evaluation for Power Grid
迈向实用的基于物理的电网机器学习设计和评估
  • DOI:
    10.48550/arxiv.2205.03673
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shimiao Li;Amritanshu Pandey;L. Pileggi
  • 通讯作者:
    L. Pileggi

Amritanshu Pandey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231261
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了