Collaborative Research: SaTC: CORE: Medium: PREMED: Privacy-Preserving and Robust Computational Phenotyping using Multisite EHR Data

合作研究:SaTC:核心:中:PREMED:使用多站点 EHR 数据的隐私保护和鲁棒计算表型分析

基本信息

  • 批准号:
    2124104
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Tensor analysis offers an effective approach to convert massive Electronic Health Records (EHRs) into meaningful and interpretable clinical concepts, or phenotypes, such as diseases and disease subtypes. It can cluster patients into subgroups and capture the interactions between multiple attributes (e.g., specific procedures used to treat a disease), enabling precision medicine. Effective phenotyping needs to be supported by a large number of diverse samples to avoid potential population bias. A major challenge is how to derive phenotypes jointly across multiple institutions, while preserving individual patients' privacy at each site. The goal of this project is to develop a federated tensor factorization framework for Privacy-preserving, Robust, and Efficient computational phenotyping using Multisite EHR Data (PREMED). While many techniques have been developed for federated learning for each of these goals, their synergy has not been well studied. Communication-efficient techniques such as compression have an intrinsic benefit to privacy (smaller disclosure risks) and robustness (smaller adversarial impact) due to the compressed and obfuscated communication. Further, federated tensor factorization presents unique challenges due to its multi-factor structure and unsupervised nature. The project aims to exploit the synergy between efficiency, privacy, and robustness and address the three interrelated challenges with a holistic approach, while utilizing the multi-factor structure of tensor factorization. The research outcome will allow institutions to jointly perform computational phenotyping using their privacy-protected data effectively and efficiently. This project includes a set of interrelated objectives including: (1) developing communication-efficient techniques for federated tensor factorization such as local Stochastic Gradient Descent (SGD) to reduce communication frequency; and multi-level compression methods to reduce per-round communication leveraging the multi-factor structure of tensor factorization; (2) developing privacy-preserving federated tensor factorization methods by exploiting the intrinsic privacy benefit of the communication-efficient techniques; and privacy-preserving input synthesization methods that offer more versatility; and (3) developing robust statistical aggregation methods for handling potential Byzantine failures and malicious sites by utilizing the intrinsic robustness benefit of the communication-efficient techniques; and robust learning-based aggregation methods for sparse settings based on truth inference and adaptive site valuation approaches. The project includes case studies using real EHR data from Emory and UTHealth for phenotype discovery and phenotype-based predictive studies in the context of Alzheimer's Disease and Sepsis. The project also includes a set of synergistic activities including organization of multi-site computational phenotyping challenges; development of collaborative sidecar courses; and active involvement of undergraduates, women and underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
张量分析提供了一种有效的方法,可以将大量的电子健康记录(EHR)转换为有意义的和可解释的临床概念或表型,如疾病和疾病亚型。它可以将患者聚类为子组,并捕获多个属性之间的相互作用(例如,用于治疗疾病的特定程序),从而实现精准医疗。有效的表型分析需要大量不同的样本来支持,以避免潜在的群体偏倚。一个主要的挑战是如何在多个机构联合获得表型,同时在每个站点保护个体患者的隐私。该项目的目标是开发一个联合张量分解框架,用于使用多站点EHR数据(PREMED)进行隐私保护,鲁棒和高效的计算表型分析。虽然已经为这些目标开发了许多联邦学习技术,但它们的协同作用尚未得到很好的研究。由于压缩和混淆的通信,诸如压缩之类的通信高效技术对隐私(较小的披露风险)和鲁棒性(较小的对抗性影响)具有内在益处。此外,联合张量因式分解由于其多因子结构和无监督性质而提出了独特的挑战。该项目旨在利用效率,隐私和鲁棒性之间的协同作用,并采用整体方法解决这三个相互关联的挑战,同时利用张量因子分解的多因子结构。研究成果将使机构能够有效地使用其受隐私保护的数据联合进行计算表型分析。该项目包括一组相互关联的目标,包括:(1)开发用于联合张量因式分解的通信高效技术,例如局部随机梯度下降(SGD),以减少通信频率;以及多级压缩方法,以利用张量因式分解的多因子结构减少每轮通信;(2)通过利用通信高效技术的固有隐私益处来开发隐私保护联合张量分解方法;以及提供更多通用性的隐私保护输入合成方法;以及(3)通过利用通信高效技术的固有鲁棒性益处来开发用于处理潜在拜占庭故障和恶意站点的鲁棒统计聚集方法;以及基于真值推断和自适应站点评估方法的用于稀疏设置的鲁棒基于学习的聚集方法。该项目包括使用Emory和UTHealth的真实的EHR数据进行的案例研究,用于阿尔茨海默病和脓毒症背景下的表型发现和基于表型的预测研究。该项目还包括一系列协同活动,包括组织多地点的计算表型挑战;开发合作边车课程;以及大学生、妇女和代表性不足的群体的积极参与。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Projected Federated Averaging with Heterogeneous Differential Privacy
  • DOI:
    10.14778/3503585.3503592
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junxu Liu;Jian Lou;Li Xiong;Jinfei Liu;Xiaofeng Meng
  • 通讯作者:
    Junxu Liu;Jian Lou;Li Xiong;Jinfei Liu;Xiaofeng Meng
Personalized Differentially Private Federated Learning without Exposing Privacy Budgets
PubMed-OA-Extraction-dataset
PubMed-OA-提取数据集
  • DOI:
    10.5281/zenodo.6330817
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheng, Jiasheng
  • 通讯作者:
    Sheng, Jiasheng
MUter: Machine Unlearning on Adversarial Training Models
MUter:对抗性训练模型的机器遗忘
Echo of Neighbors: Privacy Amplification for Personalized Private Federated Learning with Shuffle Model
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Xiong其他文献

A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity
通过测量共表达和功能相似性来识别必需蛋白质的新方法
  • DOI:
    10.1109/tnb.2016.2625460
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhang Wei;Xu Jia;Li Xiong;Zou Xiufen
  • 通讯作者:
    Zou Xiufen
Periodic solutions of semilinear Duffing equations with impulsive effects
具有脉冲效应的半线性Duffing方程的周期解
Zebrafish phd3 Negatively Regulates Antiviral Responses via Suppression of Irf7 Transactivity Independent of Its Prolyl Hydroxylase Activity.
斑马鱼 phd3 通过抑制 Irf7 反式活性来负调节抗病毒反应,而与其脯氨酰羟化酶活性无关。
  • DOI:
    10.4049/jimmunol.1900902
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Guangqing;Li Xiong;Zhou Ziwen;Tang Jinhua;Wang Jing;Liu Xing;Fan Sijia;Ouyang Gang;Xiao Wuhan
  • 通讯作者:
    Xiao Wuhan
Secure Similarity Queries: Enabling Precision Medicine with Privacy
安全相似性查询:通过隐私实现精准医学
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinfei Liu;Li Xiong
  • 通讯作者:
    Li Xiong
A Tag SNP Selection Method Based on Haplotype Recognition
一种基于单倍型识别的标签SNP选择方法

Li Xiong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Xiong', 18)}}的其他基金

NSF Student Travel Support for 2022 ACM International Conference on Information and Management (CIKM)
NSF 学生参加 2022 年 ACM 国际信息与管理会议 (CIKM) 的旅行支持
  • 批准号:
    2232829
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
SCC-IRG JST: Hyperlocal Risk Monitoring and Pandemic Preparedness through Privacy-Enhanced Mobility and Social Interactions Analysis
SCC-IRG JST:通过隐私增强的移动性和社交互动分析进行超本地风险监控和流行病防范
  • 批准号:
    2125530
  • 财政年份:
    2021
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
SCC-PG: JST: Privacy-enhanced data-driven health monitoring for smart and connected senior communities
SCC-PG:JST:针对智能互联老年社区的隐私增强型数据驱动健康监测
  • 批准号:
    1952192
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
  • 批准号:
    2027783
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
TWC: Small: Rigorous and Customizable Spatiotemporal Privacy for Location Based Applications
TWC:小型:基于位置的应用程序的严格且可定制的时空隐私
  • 批准号:
    1618932
  • 财政年份:
    2016
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
I-Corps: iCloak: Privacy Preserving Individual Location Sharing
I-Corps:iCloak:隐私保护个人位置共享
  • 批准号:
    1619679
  • 财政年份:
    2016
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
TC: Small: Adaptive Differentially Private Data Release
TC:小型:自适应差分隐私数据发布
  • 批准号:
    1117763
  • 财政年份:
    2011
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了