EAGER: Requirements Domain Specifications for Machine-Learned Software Components

EAGER:机器学习软件组件的需求领域规范

基本信息

  • 批准号:
    2124606
  • 负责人:
  • 金额:
    $ 14.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Software components are traditionally built according to a set of pre-defined specifications that define what a software component is expected to do in a given context. These specifications are traditionally gathered from stakeholders and customers during the domain-analysis and requirements-engineering phases. In contrast to deterministic software components, software components built using Machine-Learning (ML) algorithms learn their specifications from a set of collected examples rather than a set of agreed upon specifications. When the functional correctness of ML-enabled software depends only on the training data, there can be a significant gap between specification of a real-world concept and what a collected dataset represents as the concept. The goal of this research is to define the meaning of requirements satisfaction for software with machine-learning components, and to investigate methods for engineering those requirements. In this project, the investigators will formally specify partial requirements for Machine-Learned Components (MLCs) instead of allowing them to learn these specifications solely from a set of collected samples in an ad-hoc manner. The goal is thus to make machine-learning components better meet requirements by augmenting the inductive nature of ML with domain analysis, in order to characterize the extent to which the dataset contains or lacks important features that are necessary to meet requirements. This project provides a framework for formally specifying partial requirements as well as validating the presence of such specifications in the collected samples, which in essence characterizes the extent to which the dataset contains or lacks features important to learning the task. The proposal considers this problem in the context of automated driving systems where the correct definition of real-world concepts is critically important for safety reasons. For example, correct image recognition is needed to classify objects to avoid; the objective is to show that combining training by datasets with partial domain models from elicited requirements can outperform brute-force ML.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,软件组件是根据一组预定义的规范构建的,这些规范定义了软件组件在给定上下文中的预期功能。 这些规范传统上是在领域分析和需求工程阶段从涉众和客户那里收集的。与确定性软件组件相比,使用机器学习(ML)算法构建的软件组件从一组收集的示例而不是一组商定的规范中学习它们的规范。当支持ML的软件的功能正确性仅取决于训练数据时,在现实世界概念的规范与收集的数据集表示的概念之间可能存在显著差距。本研究的目标是定义的意义,需求满足的软件与机器学习组件,并调查工程的方法,这些要求。 在该项目中,研究人员将正式指定机器学习组件(MLC)的部分要求,而不是允许他们仅从一组收集的样本中学习这些规范。 因此,我们的目标是通过域分析增强ML的归纳性质,使机器学习组件更好地满足要求,以表征数据集包含或缺乏满足要求所需的重要特征的程度。该项目提供了一个框架,用于正式指定部分需求以及验证收集的样本中是否存在此类规范,这在本质上表征了数据集包含或缺乏对学习任务重要的功能的程度。该提案在自动驾驶系统的背景下考虑了这个问题,其中出于安全原因,正确定义真实世界概念至关重要。例如,需要正确的图像识别来对物体进行分类以避免;其目标是表明将数据集训练与引发需求的部分域模型相结合可以胜过蛮力ML。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CADE: The Missing Benchmark in Evaluating Dataset Requirements of AI-enabled Software
B-AIS: An Automated Process for Black-box Evaluation of Visual Perception in AI-enabled Software against Domain Semantics
Improving Generalizability of ML-enabled Software through Domain Specification
A multi-level semantic web for hard-to-specify domain concept, Pedestrian, in ML-based software
  • DOI:
    10.1007/s00766-021-00366-0
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    H. Barzamini;Murtuza Shahzad;Hamed Alhoori;Mona Rahimi
  • 通讯作者:
    H. Barzamini;Murtuza Shahzad;Hamed Alhoori;Mona Rahimi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mona Rahimi其他文献

Toward Requirements Specification for Machine-Learned Components
迈向机器学习组件的需求规范
Parallel Computing with a Bayesian Item Response Model
使用贝叶斯项目响应模型进行并行计算
Evolving Requirements-to-Code Trace Links across Versions of a Software System
跨软件系统版本不断发展的需求到代码跟踪链接
Trace Link Evolution across Multiple Software Versions in Safety-Critical Systems
跟踪安全关键系统中多个软件版本的链路演变
On Association of Code Change Types and CI Build Failures in Software Repositories
软件存储库中代码更改类型与 CI 构建失败的关联

Mona Rahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Designing Efficient Market Mechanisms with Simplicity Requirements
设计具有简单性要求的高效市场机制
  • 批准号:
    EP/X021696/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Research Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Standard Grant
Delineating the developmental requirements for stem-like T cells
描述干样 T 细胞的发育要求
  • 批准号:
    DE240100827
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Discovery Early Career Researcher Award
iREAL: Inclusive Requirements Elicitation for AI in Libraries to Support Respectful Management of Indigenous Knowledges
iREAL:图书馆人工智能的包容性需求获取,支持对本土知识的尊重管理
  • 批准号:
    AH/Z505638/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Research Grant
Generative AI toolkit to enforce regulatory requirements and enable capacity for increased corporate transparency.
生成式人工智能工具包,用于执行监管要求并提高企业透明度。
  • 批准号:
    10098889
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Collaborative R&D
Exploration of the technical requirements to enable multiple legal-service-delivery-models in family law
探索家庭法中实现多种法律服务提供模式的技术要求
  • 批准号:
    10099698
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Collaborative R&D
Mediating effects of hepcidin on iron requirements with undernutrition
铁调素对营养不良铁需求的中介作用
  • 批准号:
    10996638
  • 财政年份:
    2024
  • 资助金额:
    $ 14.64万
  • 项目类别:
CAREER: Measuring and Supporting Creativity in Developing Software Requirements
职业:衡量和支持开发软件需求的创造力
  • 批准号:
    2236953
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Continuing Grant
Using clinical polysomnography data and machine learning to determine minimum sensing requirements for pediatric sleep studies
使用临床多导睡眠图数据和机器学习来确定儿科睡眠研究的最低传感要求
  • 批准号:
    491364
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Operating Grants
Considering the International Standard (ISO) 22458, Consumer Vulnerability: Requirements and Guidelines for the Design and Delivery of Inclusive Service in the context of Japanese Consumer Law
考虑到国际标准 (ISO) 22458,《消费者脆弱性:日本消费者法背景下设计和提供包容性服务的要求和指南》
  • 批准号:
    23K01200
  • 财政年份:
    2023
  • 资助金额:
    $ 14.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了