Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
基本信息
- 批准号:2124748
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project revolves around the mathematical analysis of certain types of coherent structures in fluids. Roughly speaking, a coherent structure is a well-defined feature in fluid flow that can be easily distinguished and mathematically described in a simple manner. One example is a vortex, where all fluid particles rotate about a single point. Another example is a sharp front, which may arise when a fluid consists of warm and cold regions separated by a thin moving transition region. Many more examples of coherent structures exist in the natural world and we encounter them daily. While it seems to be an extremely formidable problem to give an efficient way to describe general fluid flows, describing the evolution of coherent structures seems to be amenable to mathematical analysis. Moreover, since coherent structures are often observed to be dominant in physical and numerical experiments, describing their evolution is of great importance. A simple question that one could ask in this regard is: What happens to a "strong" vortex under small perturbations? Does the vortex persist or does it quickly disintegrate? Another question of interest is whether nice fluid flows can develop coherent structures that possess a singularity, that is, infinite velocity or velocity gradient. Such questions lie at the core of this project. Mathematically, the research focuses primarily on the dynamics of both weak and strong solutions to the incompressible Euler equations and related models. The project investigates a novel approach to the classical problem of finite-time singularity formation in fluids with zero viscosity -- that is, the emergence of certain singular structures in a fluid without external influence. Previous work provided an example of finite-time singularity formation for strong solutions to the incompressible Euler equations in certain settings. Part of the project involves extending and strengthening these results as well as investigating the applicability of the methods to other questions including the dynamics of vortex patches in the 2D Euler equation. Another part of the project studies the stability of certain singular weak solutions to the incompressible Euler equation and related models, specifically, the stability of singular vortices with respect to smoother perturbations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目围绕着流体中某些类型的相干结构的数学分析。粗略地说,相干结构是流体流动中定义明确的特征,可以很容易地区分并以简单的方式进行数学描述。一个例子是漩涡,其中所有流体粒子围绕单个点旋转。另一个例子是尖锐的前沿,当流体由薄的移动过渡区分隔开的温暖和寒冷区域组成时,可能会出现这种情况。 自然界中存在着更多的相干结构的例子,我们每天都会遇到它们。虽然这似乎是一个非常艰巨的问题,给出一个有效的方法来描述一般的流体流动,描述相干结构的演变似乎是服从数学分析。此外,由于相干结构经常被观察到在物理和数值实验中占主导地位,描述它们的演变是非常重要的。在这方面,人们可以问一个简单的问题:在小扰动下,“强”涡旋会发生什么?漩涡是持续存在还是迅速瓦解?另一个感兴趣的问题是,良好的流体流动是否可以发展具有奇点的相干结构,即无限速度或速度梯度。 这些问题是这个项目的核心。 在数学上,研究主要集中在不可压缩欧拉方程和相关模型的弱解和强解的动力学。该项目研究了一种新的方法来解决零粘度流体中有限时间奇异性形成的经典问题,即在没有外部影响的情况下,流体中出现某些奇异结构。以前的工作提供了一个例子,有限时间奇点形成强解的不可压缩欧拉方程在某些设置。该项目的一部分涉及扩展和加强这些结果,以及调查的适用性的方法,包括在二维欧拉方程的涡补丁的动力学的其他问题。该项目的另一部分研究了不可压缩欧拉方程和相关模型的某些奇异弱解的稳定性,特别是奇异涡相对于平滑扰动的稳定性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomalous Dissipation in Passive Scalar Transport
- DOI:10.1007/s00205-021-01736-2
- 发表时间:2022-01-16
- 期刊:
- 影响因子:2.5
- 作者:Drivas, Theodore D.;Elgindi, Tarek M.;Jeong, In-Jee
- 通讯作者:Jeong, In-Jee
Growth of Sobolev norms and loss of regularity in transport equations
- DOI:10.1098/rsta.2021.0024
- 发表时间:2022-06-13
- 期刊:
- 影响因子:5
- 作者:Crippa, Gianluca;Elgindi, Tarek;Mazzucato, Anna L.
- 通讯作者:Mazzucato, Anna L.
Propagation of singularities by Osgood vector fields and for 2D inviscid incompressible fluids
奥斯古德矢量场和二维无粘不可压缩流体的奇点传播
- DOI:10.1007/s00208-022-02498-2
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Drivas, Theodore D.;Elgindi, Tarek M.;La, Joonhyun
- 通讯作者:La, Joonhyun
The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain
- DOI:10.1016/j.aim.2021.108091
- 发表时间:2020-01
- 期刊:
- 影响因子:1.7
- 作者:T. Elgindi;In-Jee Jeong
- 通讯作者:T. Elgindi;In-Jee Jeong
Inviscid Limit of Vorticity Distributions in the Yudovich Class
尤多维奇级涡度分布的无粘极限
- DOI:10.1002/cpa.21940
- 发表时间:2020
- 期刊:
- 影响因子:3
- 作者:Constantin, Peter;Drivas, Theodore D.;Elgindi, Tarek M.
- 通讯作者:Elgindi, Tarek M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tarek Elgindi其他文献
Tarek Elgindi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tarek Elgindi', 18)}}的其他基金
Conference: Recent Advances in Mathematical Fluid Dynamics
会议:数学流体动力学的最新进展
- 批准号:
2247145 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
CAREER:Formation of Small Scales and Dissipation in Incompressible Fluids
职业:不可压缩流体中小尺度的形成和耗散
- 批准号:
2043024 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
CAREER:Formation of Small Scales and Dissipation in Incompressible Fluids
职业:不可压缩流体中小尺度的形成和耗散
- 批准号:
1945669 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
- 批准号:
1817134 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
相似国自然基金
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307680 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307681 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
MPS-Ascend: High Altitude Filament Formation and Propagation
MPS-Ascend:高空细丝形成和传播
- 批准号:
2213242 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Fellowship Award
General mechanism of the bend formation and propagation revealed by the analysis of insect sperm flagella
昆虫精子鞭毛分析揭示弯曲形成和传播的一般机制
- 批准号:
21H02455 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comparison of prediction errors caused by each propagation process from source formation to coast
从震源地层到海岸各个传播过程造成的预测误差比较
- 批准号:
21K03688 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of propagation reaction for lignin formation by using artificial polysaccharide matrix
澄清使用人工多糖基质形成木质素的增长反应
- 批准号:
21H04730 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: Nonlinear Dynamics of Shear Wave Propagation and Shock Formation in Soft and Biological Materials
职业:软质和生物材料中剪切波传播和冲击形成的非线性动力学
- 批准号:
1942016 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mechanisms of thrombus formation and propagation leading to the onset of atherothrombosis
导致动脉粥样硬化血栓形成的血栓形成和传播机制
- 批准号:
19H03445 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of the mechanisms of the Parkinson's disease genes and Lewy Body formation and alpha-synuclein propagation mechanisms
阐明帕金森病基因和路易体形成的机制以及α-突触核蛋白传播机制
- 批准号:
18H04043 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
- 批准号:
1817134 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant