Conference: Recent Advances in Mathematical Fluid Dynamics

会议:数学流体动力学的最新进展

基本信息

  • 批准号:
    2247145
  • 负责人:
  • 金额:
    $ 4.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

The conference and summer school "Recent Advances in Mathematical Fluid Dynamics" to be held at Duke University from May 16-24, 2023. The summer school will be from May 16-19, immediately followed by the conference from May 20-24. One major challenge in mathematical fluid dynamics is to study the viability of the basic mathematical models, like the Euler and Navier-Stokes equations, on reasonably long intervals of time. Another major challenge is to determine what the models have to say about turbulent phenomena and the behavior of fluid flows in the long-term. These seemingly unrelated areas of study are connected by a core of principles and techniques. One of the main goals of the summer school and conference is to bring together leading experts in the analysis of fluid equations to explore these connections and chart future a course of action, to provide junior researchers with the tools to enter these fields, and to bring the opportunity to disseminate and discuss the latest cutting-edge results in the field. The award funds will help defray travel and local expenses of the participants, emphasizing the support of a diverse group of students, postdocs, and junior researchers. The main questions that will be considered at this conference relate to the well-posedness and the long-time and statistical behavior of fluid equations and related physical models. In recent years, the PDE analysis of fluid flows and related equations has seen numerous important advances on all the above fronts. There have been numerous breakthroughs in the study of well-posedness and the short-time behavior of solutions, both weak and smooth. Powerful techniques have been introduced to study many problems related to well-posedness of the fundamental equations and related models. There have also been spectacular advances on the study of the long-time behavior and statistical properties of solutions, where new and seemingly generic relaxation mechanisms have been discovered. The conference we are organizing brings together experts from around the world to present recent advances in these areas of research and gives them a venue to foster collaboration and a healthy exchange of ideas. The conference website is https://sites.duke.edu/fluids/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议和暑期学校“数学流体动力学的最新进展”将于2023年5月16日至24日在杜克大学举行。暑期学校将于5月16日至19日举行,紧接着是5月20日至24日的会议。数学流体动力学的一个主要挑战是研究基本数学模型的可行性,如欧拉和纳维-斯托克斯方程,在合理的长时间间隔。另一个主要的挑战是确定模型对湍流现象和流体流动的长期行为有什么看法。这些看似不相关的研究领域由原则和技术的核心连接起来。暑期学校和会议的主要目标之一是汇集流体方程分析方面的领先专家,探索这些联系并制定未来的行动方针,为初级研究人员提供进入这些领域的工具,并带来传播和讨论该领域最新前沿成果的机会。奖金将用于支付参与者的旅行和当地费用,强调对学生,博士后和初级研究人员的支持。 本次会议将讨论的主要问题涉及流体方程和相关物理模型的适定性、长时间和统计行为。近年来,流体流动和相关方程的偏微分方程分析在上述所有方面都取得了许多重要进展。在弱解和光滑解的适定性和短时行为的研究中已经有了许多突破。强有力的技术已经被引入到研究许多问题有关的适定性的基本方程和相关的模型。在研究溶液的长时间行为和统计性质方面也取得了惊人的进展,发现了新的和似乎通用的弛豫机制。我们正在组织的会议汇集了来自世界各地的专家,介绍这些研究领域的最新进展,并为他们提供了一个促进合作和健康交流思想的场所。会议网站是https://sites.duke.edu/fluids/.This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tarek Elgindi其他文献

Tarek Elgindi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tarek Elgindi', 18)}}的其他基金

Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
  • 批准号:
    2124748
  • 财政年份:
    2021
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Continuing Grant
CAREER:Formation of Small Scales and Dissipation in Incompressible Fluids
职业:不可压缩流体中小尺度的形成和耗散
  • 批准号:
    2043024
  • 财政年份:
    2020
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Continuing Grant
CAREER:Formation of Small Scales and Dissipation in Incompressible Fluids
职业:不可压缩流体中小尺度的形成和耗散
  • 批准号:
    1945669
  • 财政年份:
    2020
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Continuing Grant
Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
  • 批准号:
    1817134
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1402357
  • 财政年份:
    2014
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Fellowship Award

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
  • 批准号:
    2246779
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference: IHES 2023 Summer School: Recent advances in algebraic K-theory
会议:IHES 2023 暑期学校:代数 K 理论的最新进展
  • 批准号:
    2304723
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference: Recent advances in the mechanistic understanding of avian responses to environmental challenges
会议:鸟类应对环境挑战的机制理解的最新进展
  • 批准号:
    2336743
  • 财政年份:
    2023
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference: Chemical Sensing Innovation: Harnessing Recent Advances in Biological, Physical, Chemical and Data sciences for Engineering Next Generation Electronic Noses
会议:化学传感创新:利用生物、物理、化学和数据科学的最新进展设计下一代电子鼻
  • 批准号:
    2231526
  • 财政年份:
    2022
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
  • 批准号:
    2230844
  • 财政年份:
    2022
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Conference "Recent Advances in Functional Analysis"
会议“泛函分析的最新进展”
  • 批准号:
    1839058
  • 财政年份:
    2018
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Recent Advances in Kahler Geometry Conference
卡勒几何会议的最新进展
  • 批准号:
    1515246
  • 财政年份:
    2015
  • 资助金额:
    $ 4.95万
  • 项目类别:
    Standard Grant
Recent Frontiers and Advances in Drug Addiction (IDARS Conference)
吸毒成瘾的最新前沿和进展(IDARS 会议)
  • 批准号:
    8986683
  • 财政年份:
    2015
  • 资助金额:
    $ 4.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了