Mechanics of Fatigue in High to Medium Entropy Alloys
高至中熵合金的疲劳力学
基本信息
- 批准号:2125821
- 负责人:
- 金额:$ 40.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Structural materials form the backbone of a country’s infrastructure dictating major design advancements in nuclear, aerospace, automotive, and civil sectors. There is an ever-increasing need for higher material strength and fatigue-resistance to advance toward an energy-efficient future. Until recently, all innovations in materials-design relied on the concept of “alloying” where desirable solid-solid metallic solutions were derived from a single predominant base element. However, recent years have witnessed a paradigm shift with the discovery of high entropy alloys containing multiple elements (five or more) in equal proportions instead of one principal element, realizing unprecedented levels of strength and fatigue-resistance. This award will support research into the primary micro-scale mechanism that imparts such unprecedented properties, which is essentially an interaction between two kinds of defects within the material’s crystalline structure. One defect is known as a “dislocation” while the other a “twin boundary” and their interaction is highly complex, exhibiting a rich variety of outcomes critically affecting structural performance. A predictive theory for material strengthening and fatigue-resistance under governance of such a mechanism has not emerged and will be the focus of supported research. The research will also train a diverse group of graduate and undergraduate students, allowing them to interact with other researchers in the field, and preparing them for the future workforce. The project will forward a novel methodology for analyzing intrinsic strength, strain-hardening and fatigue-resistance of high-to-medium entropy alloys from first principles. State of the art understanding of these performance characteristics suffer from an improper treatment of core structure of dislocations. A predictive framework for dislocation core-width capturing both continuum strain-energies and atomistic fault-energies of misfit is developed. This framework is further enriched to capture core-evolution of dislocations in slip-twin interactions abundant in these alloys. Both frameworks comprehensively account for elastic anisotropy, stacking fault energies of slip and twinning and residual Burgers vectors of slip-twin interactions resulting in ab initio predictions of flow stress at yield and stress-elevations during strain-hardening. A novel model for the fatigue-threshold will be developed coupling with these predictions to quantify resistance to fatigue crack extension. The work will remove all empiricism and bring about a rigorous scientific approach. The merits of the scientific approach are realized by the identification of key microstructural parameters which will serve as optimizable targets for the body of research on the development of high-to-medium entropy alloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结构材料构成了一个国家基础设施的支柱,决定了核、航空航天、汽车和民用部门的重大设计进步。人们对更高的材料强度和耐疲劳性的需求不断增加,以实现节能的未来。直到最近,材料设计的所有创新都依赖于“合金化”的概念,其中理想的固-固金属溶液来自于单一的主要基础元素。然而,近年来,随着高熵合金的发现,合金中含有等比例的多种元素(五种或更多种),而不是一种主要元素,实现了前所未有的强度和抗疲劳性。该奖项将支持对赋予这种前所未有的特性的主要微观机制的研究,这种机制本质上是材料晶体结构中两种缺陷之间的相互作用。一个缺陷被称为“位错”,而另一个是“孪生边界”,它们的相互作用非常复杂,表现出各种各样的结果,严重影响结构性能。在这种机制的治理下,材料强化和抗疲劳的预测理论还没有出现,将是支持研究的重点。该研究还将培养一批多样化的研究生和本科生,使他们能够与该领域的其他研究人员互动,并为未来的劳动力做好准备。该项目将提出一种新的方法,从第一性原理分析高到中熵合金的本征强度,应变硬化和疲劳抗力。对这些性能特征的现有技术的理解受到对位错的核心结构的不适当处理的影响。建立了一个同时捕获连续应变能和错配原子能的位错芯宽度预测框架。该框架进一步丰富,以捕捉核心的位错在这些合金中丰富的滑移孪晶相互作用的演变。这两个框架全面考虑弹性各向异性,堆垛层错能的滑移和孪晶和剩余的伯格斯矢量的滑移-孪晶相互作用,从而导致在屈服和应力升高的应变硬化过程中的流动应力的从头算预测。将开发一种新的疲劳门槛值模型与这些预测耦合,以量化疲劳裂纹扩展阻力。这项工作将消除一切官僚主义,带来严格的科学方法。科学方法的优点是通过识别关键的微观结构参数来实现的,这些参数将作为高到中熵合金开发研究的优化目标。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolving dislocation cores at Twin Boundaries: Theory of CRSS Elevation
- DOI:10.1016/j.ijplas.2021.103141
- 发表时间:2021-11
- 期刊:
- 影响因子:9.8
- 作者:O. Celebi;A. Mohammed;J. Krogstad;H. Sehitoglu
- 通讯作者:O. Celebi;A. Mohammed;J. Krogstad;H. Sehitoglu
Effect of Dislocation Character on the CRSS
- DOI:10.1016/j.actamat.2023.118982
- 发表时间:2023-05
- 期刊:
- 影响因子:9.4
- 作者:O. Celebi;A. Mohammed;H. Sehitoglu
- 通讯作者:O. Celebi;A. Mohammed;H. Sehitoglu
Critical stress prediction upon accurate dislocation core description
- DOI:10.1016/j.actamat.2022.117989
- 发表时间:2022-07
- 期刊:
- 影响因子:9.4
- 作者:A. Mohammed;O. Celebi;H. Sehitoglu
- 通讯作者:A. Mohammed;O. Celebi;H. Sehitoglu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huseyin Sehitoglu其他文献
Thermomechanical fatigue of particulate-reinforced aluminum 2xxx-T4
- DOI:
10.1007/bf02670292 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Metin Karayaka;Huseyin Sehitoglu - 通讯作者:
Huseyin Sehitoglu
Thermomechanical fatigue, oxidation, and creep: Part i. Damage mechanisms
- DOI:
10.1007/bf02663207 - 发表时间:
1989-09-01 - 期刊:
- 影响因子:2.500
- 作者:
R. W. Neu;Huseyin Sehitoglu - 通讯作者:
Huseyin Sehitoglu
Low-temperature creep of a carburized steel
- DOI:
10.1007/bf02658065 - 发表时间:
1992-09-01 - 期刊:
- 影响因子:2.500
- 作者:
R. W. Neu;Huseyin Sehitoglu - 通讯作者:
Huseyin Sehitoglu
Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction
- DOI:
10.1007/bf02663208 - 发表时间:
1989-09-01 - 期刊:
- 影响因子:2.500
- 作者:
R. W. Neu;Huseyin Sehitoglu - 通讯作者:
Huseyin Sehitoglu
Stress-state effects on the stress-induced martensitic transformation of carburized 4320 steels
- DOI:
10.1007/s11661-998-0123-0 - 发表时间:
1998-02-01 - 期刊:
- 影响因子:2.500
- 作者:
I. Karaman;M. Balzer;Huseyin Sehitoglu;H. J. Maier - 通讯作者:
H. J. Maier
Huseyin Sehitoglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huseyin Sehitoglu', 18)}}的其他基金
Fatigue Initiation Resistance in Shape Memory Alloys-Theory and Experiments
形状记忆合金的疲劳引发抗力——理论与实验
- 批准号:
2104971 - 财政年份:2021
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Towards a Scientific Understanding of Fatigue Damage Tolerance in Shape Memory Materials
科学理解形状记忆材料的疲劳损伤耐受性
- 批准号:
1709515 - 财政年份:2017
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Fundamental Understanding of Deformation in High Entropy Structural Alloys
高熵结构合金变形的基本理解
- 批准号:
1562288 - 财政年份:2016
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Towards Scientific Understanding of Advanced Transforming Metals
科学理解先进转变金属
- 批准号:
1300284 - 财政年份:2013
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Design of High Temperature Shape Memory Alloys
高温形状记忆合金的设计
- 批准号:
1333884 - 财政年份:2013
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Twin Nucleation and Migration - Modeling and Experiments
双成核和迁移 - 建模和实验
- 批准号:
1130031 - 财政年份:2011
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Twinning Studies via Experiments and DFT-Mesoscale Formulation
通过实验和 DFT 介观尺度公式进行孪生研究
- 批准号:
0803270 - 财政年份:2008
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
Sensors: Magnetoshapememory Effect Harnessed for Power Generation and Sensing
传感器:利用磁形状记忆效应发电和传感
- 批准号:
0428428 - 财政年份:2004
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
US-Italy Cooperative Research: Linking Deformation Length Scales in Transforming Materials
美国-意大利合作研究:连接变形材料中的变形长度尺度
- 批准号:
0437345 - 财政年份:2004
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 40.55万 - 项目类别:
Studentship
CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
- 批准号:
2338178 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fatigue Life Assessment of Structures under Realistic Loading Conditions
实际载荷条件下结构的疲劳寿命评估
- 批准号:
DP240103201 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Discovery Projects
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Design of high fatigue strength ferrite-martensite steel based on microstructural control and strengthening mechanisms
基于显微组织控制和强化机制的高疲劳强度铁素体-马氏体钢设计
- 批准号:
22KJ1400 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Examining Links between General Fatigue in Myasthenia Gravis with Objectively Measured Sleep
检查重症肌无力的全身疲劳与客观测量的睡眠之间的联系
- 批准号:
480775 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
- 批准号:
22KF0310 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigation of the fibre-matrix interface for glass fibre & carbon fibre composites exposed to cryogenic loading and fatigue conditions.
玻璃纤维纤维-基体界面的研究
- 批准号:
2889289 - 财政年份:2023
- 资助金额:
$ 40.55万 - 项目类别:
Studentship