CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
基本信息
- 批准号:2239307
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metal additive manufacturing (AM) such as laser powder-bed fusion (LPBF) has been increasingly explored not only for product innovation, but also shop-floor production, demonstrated by growing success from a variety of industries. However, the lack of knowledge in both fatigue failure and the performance uncertainty of LPBF parts poses a significant challenge and undermines the potential of deploying LPBF for high-consequence applications. This Faculty Early Career Development (CAREER) award supports fundamental research to understand the effects of LPBF processing on defects and subsequent fatigue behavior, advance the knowledge of fatigue scattering of LPBF parts that are complex in geometry and subject to multiaxial loading. The effort will establish a physics-centric, machine learning framework for fatigue life predictions, serving as a technological foundation for future metal AM production of dynamic load-bearing applications, and thus, enhance the competitiveness of U.S. industry. This CAREER project will also integrate education and outreach programs designed to broaden the participation from underrepresented groups through actively engaging K-12 students for STEM education and recruiting women and minorities into research, priming future generations of diverse engineers with the knowledge and skills indispensable in the age of manufacturing innovation and big data.The ultimate goal of this early career effort is to understand fatigue failures of complex LPBF parts under multiaxial loading for data-driven fatigue life predictions. The research will investigate the nature of fatigue failures from plastic deformation and crack initiation at the highest stress concentrations and translate fatigue life predictions into evaluating the crack growth at the vulnerable zones using a multiscale approach. On the micro-scale, critical defects with crack-initiating features (by x-ray computed tomography or optical profilometry) will be identified based on the correlation with fatigue failures; both the effects of critical defects and their spatial interactions on crack growth will be examined using fracture mechanics and data-intense statistics. On the part scale, the weak regions of the highest stress concentrations will be examined by finite element modeling of stress and strain behaviors through decoupling multiaxial loading. The effects of critical defects and the principal stresses at vulnerable localities will then be incorporated into a hierarchical graph convolutional network of deep learning to model their synergistic impacts on crack growth and calculate the fatigue life of LPBF parts with advanced data analytics. The findings are expected to generate new knowledge of defect formation relevant to fatigue performance of LPBF parts, uncover the synergistic impacts of multiscale factors on fatigue fractures, and further LPBF adoption for high-consequence applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属增材制造(AM),如激光粉末床融合(LPBF),不仅在产品创新方面得到了越来越多的探索,而且在车间生产方面也得到了越来越多的探索,这一点在各个行业都取得了越来越大的成功。然而,缺乏知识的疲劳失效和LPBF部件的性能不确定性构成了一个重大的挑战,并破坏了部署LPBF的高后果应用的潜力。该学院早期职业发展(CAREER)奖支持基础研究,以了解LPBF处理对缺陷和随后的疲劳行为的影响,推进几何形状复杂并承受多轴载荷的LPBF零件的疲劳分散知识。这项工作将建立一个以物理为中心的机器学习框架,用于疲劳寿命预测,为未来金属AM生产动态承载应用奠定技术基础,从而提高美国工业的竞争力。该CAREER项目还将整合教育和推广计划,旨在通过积极吸引K-12学生参与STEM教育并招募妇女和少数民族参与研究,扩大代表性不足的群体的参与,为未来几代多样化的工程师提供制造业创新和大数据时代不可或缺的知识和技能。这种早期职业努力的最终目标是了解疲劳复杂LPBF部件在多轴载荷下的失效数据驱动的疲劳寿命预测。该研究将调查疲劳失效的性质,从塑性变形和裂纹萌生在最高的应力集中和疲劳寿命预测到评估裂纹扩展的脆弱区域使用多尺度的方法。在微观尺度上,临界缺陷与裂纹起始特征(通过X射线计算机断层扫描或光学轮廓术)将根据与疲劳失效的相关性进行识别;临界缺陷及其空间相互作用对裂纹扩展的影响将使用断裂力学和数据密集统计进行检查。在部件尺度上,最高应力集中的薄弱区域将通过解耦多轴加载的应力和应变行为的有限元建模来检查。然后,关键缺陷和脆弱部位的主应力的影响将被纳入深度学习的分层图卷积网络中,以模拟它们对裂纹扩展的协同影响,并通过高级数据分析计算LPBF部件的疲劳寿命。这些发现有望产生与LPBF部件疲劳性能相关的缺陷形成的新知识,揭示多尺度因素对疲劳断裂的协同影响,并进一步将LPBF用于高后果应用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Liu其他文献
span style=font-family:quot;Times New Romanquot;,quot;serifquot;;font-size:12pt;Polymer-derived yttrium silicate coatings on 2D C/SiC composites/span
二维 C/SiC 复合材料上聚合物衍生的硅酸钇涂层
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:5.7
- 作者:
Jia Liu;Litong Zhang;Fei Hu;Juan Yang;Laifei Cheng;Yiguang Wang - 通讯作者:
Yiguang Wang
[Clinical study on combination of acupuncture, cupping and medicine for treatment of fibromyalgia syndrome].
针、拔罐、药物联合治疗纤维肌痛综合征的临床研究[J].
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Chang;Xiao;Zhen;Xu;Siqin Huang;Qiong;Jia Liu;Yuan Chen - 通讯作者:
Yuan Chen
kNN Research based on Multi-Source Query Points on Road Networks
基于路网多源查询点的kNN研究
- DOI:
10.23940/ijpe.17.04.p17.501510 - 发表时间:
2017-07 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Wei Chen;Lin Zhao;Junfeng Zhou;Ziyang Chen - 通讯作者:
Ziyang Chen
Electrochemical and Plasmonic Photochemical Oxidation Processes of para-Aminothiophenol on a Nanostructured Gold Electrode
纳米结构金电极上对氨基苯硫酚的电化学和等离子体光化学氧化过程
- DOI:
10.1021/acs.jpcc.1c05928 - 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Hui-Yuan Peng;De-Yin Wu;Yuan-Hui Xiao;Huan-Huan Yu;Jia-Zheng Wang;Jian-De Lin;Rajkumar Devasenathipathy;Jia Liu;Pei-Hang Zou;Meng Zhang;Jian-Zhang Zhou;Zhong-Qun Tian - 通讯作者:
Zhong-Qun Tian
Indirect Effects of Fluid Intelligence on Creative Aptitude Through Openness to Experience
流体智力通过开放体验对创造性能力的间接影响
- DOI:
10.1007/s12144-017-9633-5 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Xiqin Liu;Ling Liu;Zhencai Chen;Yiying Song;Jia Liu - 通讯作者:
Jia Liu
Jia Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Liu', 18)}}的其他基金
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
- 批准号:
2338987 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
- 批准号:
2305729 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
- 批准号:
2134689 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
- 批准号:
ES/W004860/1 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Fellowship
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
- 批准号:
2140277 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
- 批准号:
2038603 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
2110259 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
- 批准号:
2102233 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
1943226 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
- 批准号:
2110252 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
- 批准号:
2328260 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
- 批准号:
2328010 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ERI: Manufacturing USA: Additive Manufacturing of Iron based Shape Memory Alloy
ERI:美国制造:铁基形状记忆合金的增材制造
- 批准号:
2301766 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
- 批准号:
2229036 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
FMRG: Manufacturing USA: Cyber: Data-Driven Methods for Future Cyber Manufacturing as a Service
FMRG:美国制造:网络:未来网络制造即服务的数据驱动方法
- 批准号:
2229260 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
FMRG: Manufacturing USA: Cyber: Privacy-Preserving Tiny Machine Learning Edge Analytics to Enable AI-Commons for Secure Manufacturing
FMRG:美国制造业:网络:保护隐私的小型机器学习边缘分析,以实现 AI 共享以实现安全制造
- 批准号:
2134667 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Manufacturing Talent Development Innovation Laboratory: A Workshop for Manufacturing USA Institute Workforce Development Stakeholders
制造业人才发展创新实验室:美国制造业研究所劳动力发展利益相关者研讨会
- 批准号:
2034255 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Manufacturing USA: Precision Alignment of Roll-to-Roll Printing of Flexible Paper Electronics Through Modeling and Virtual Sensor-based Control
美国制造:通过建模和基于虚拟传感器的控制实现柔性纸电子产品卷对卷印刷的精确对准
- 批准号:
1907250 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant