EAGER: Evidence-Based Model of Adoption of Robotics for Pandemics and Natural Disasters

EAGER:采用机器人技术应对流行病和自然灾害的循证模型

基本信息

  • 批准号:
    2125988
  • 负责人:
  • 金额:
    $ 23.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Robotics innovations (unmanned ground, aerial, and marine systems) have been sporadically used for disaster response by emergency management agencies since 2001. Disasters pose a dilemma: on one hand, there is often an emotional urge to try anything in the hopes of coping with overwhelming potential loss of life and livelihoods; on the other hand, the poorly considered introduction of a robot into a disaster can lead to worse outcomes than doing nothing. This EArly Concept Grant for Exploratory Research (EAGER) study will bring together leaders in robotics, law, emergency management, and public health with expertise in emergency management and policy to investigate robotics innovations and instances of ethical concerns during the COVID-19 pandemic. The result will be the first theory of responsible robotics innovation for disasters. This will transform how responders select robot technology during a disaster, ultimately saving lives, mitigating long-term environmental and health impacts, and accelerating economic recovery. The project will provide evidence for anticipatory governance, such as new regulations and policies, to accelerate the adoption of safe, effective robots during a disaster while reducing negative consequences from either deploying unsound technology or deferring deployment of technology. The project will impact how engineering, law, and policy is taught, train graduate and undergraduate students in multidisciplinary approaches to science and society, and increase the diversity of students in the research pipeline. The multidisciplinary team will conduct a rigorous analysis, featuring structured interviews with clinical healthcare providers, public health and public safety officials worldwide who deployed robots during the pandemic in order to understand the influences on adoption. The demand analysis will be complemented by prior work in quantitatively classifying the capabilities of the robot for a use case; together these orthogonal sets of user-centric and robot-centric influences will create a novel template for describing future innovation. The project will explore the legal systems and how they adapted to the exigencies of the pandemic, especially any correlations with national policies on robotics, and investigate emergent ethical concerns. The resulting quantitative model is expected to be both prescriptive for policy and predictive for future law and science research into robotics adoption. The model will revolutionize the methodology for constructing innovation theories. It will contribute to foundational responsible innovation research and comparative law, especially how groups interpret legal uses of robotics and how robotics impacts expectations of rights and responsibilities of agencies and developers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自2001年以来,机器人技术创新(无人地面、空中和海上系统)已被应急管理机构零星地用于灾害响应。灾难造成了一种两难境地:一方面,人们往往有一种情绪上的冲动,想尝试任何事情,希望能应对巨大的潜在生命和生计损失;另一方面,考虑不周地将机器人引入灾难可能导致比什么都不做更糟糕的结果。EARLY探索性研究概念补助金(EAGER)研究将汇集机器人,法律,应急管理和公共卫生领域的领导者,他们在应急管理和政策方面具有专业知识,以调查COVID-19大流行期间的机器人创新和伦理问题。其结果将是第一个负责任的灾难机器人创新理论。这将改变响应者在灾难期间选择机器人技术的方式,最终拯救生命,减轻长期环境和健康影响,并加速经济复苏。 该项目将为前瞻性治理提供证据,例如新的法规和政策,以加速在灾难期间采用安全有效的机器人,同时减少部署不健全技术或推迟技术部署的负面影响。该项目将影响工程,法律和政策的教学方式,培养研究生和本科生在科学和社会的多学科方法,并增加学生在研究管道的多样性。多学科团队将进行严格的分析,包括与全球各地在疫情期间部署机器人的临床医疗服务提供者、公共卫生和公共安全官员进行结构化访谈,以了解对采用的影响。需求分析将通过对用例的机器人能力进行定量分类的先前工作进行补充;这些以用户为中心和以机器人为中心的影响的正交集合将共同创建用于描述未来创新的新模板。该项目将探索法律的系统以及它们如何适应大流行的紧急情况,特别是与国家机器人政策的任何相关性,并调查紧急的伦理问题。由此产生的定量模型预计将对政策具有规范性,并对未来机器人技术采用的法律和科学研究具有预测性。该模型将使创新理论的构建方法发生革命性的变化。它将有助于基础性的负责任创新研究和比较法,特别是团体如何解释机器人技术的法律的使用,以及机器人技术如何影响机构和开发人员的权利和责任的期望。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of the Use of Robots for the Second Year of the COVID-19 Pandemic
COVID-19 大流行第二年的机器人使用情况分析
  • DOI:
    10.1109/ssrr56537.2022.10018671
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murphy, Robin;Kathasagaram, Amrita;Millican, Truitt;Clendenin, Angela;deWitte, Paula;Moats, Jason
  • 通讯作者:
    Moats, Jason
AI reflections in 2021
2021 年人工智能反思
  • DOI:
    10.1038/s42256-021-00435-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    23.8
  • 作者:
    Buckner, Cameron;Miikkulainen, Risto;Forrest, Stephanie;Milano, Silvia;Zou, James;Prunk, Carina;Irrgang, Christopher;Cohen, I. Glenn;Su, Hao;Murphy, Robin R.
  • 通讯作者:
    Murphy, Robin R.
Adoption of Robots for Disasters: Lessons from the Response to COVID-19
  • DOI:
    10.1561/2300000062
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Murphy;Vignesh Babu Manjunath Gandudi;Justin Adams;A. Clendenin;Jason B. Moats
  • 通讯作者:
    R. Murphy;Vignesh Babu Manjunath Gandudi;Justin Adams;A. Clendenin;Jason B. Moats
Robotics Responds to the COVID-19 Outbreak [From the Guest Editors]
机器人技术应对 COVID-19 爆发 [来自客座编辑]
  • DOI:
    10.1109/mra.2020.3048866
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Marques, Lino;Murphy, Robin;Althoefer, Kaspar;Tadokoro, Satoshi;Laschi, Cecilia
  • 通讯作者:
    Laschi, Cecilia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Murphy其他文献

Smart film actuators using biomass plastic
使用生物质塑料的智能薄膜执行器
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Satoshi Tadokoro;Robin Murphy;Samuel Stover;William Brack;Masashi Konyo;Toshihiko Nishimura;Osachika Tanimoto;米山聡,田中信雄
  • 通讯作者:
    米山聡,田中信雄
Cooperative Navigation of Micro-Rovers Using Color Segmentation
  • DOI:
    10.1023/a:1008963932386
  • 发表时间:
    2000-08-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Jeff Hyams;Mark W. Powell;Robin Murphy
  • 通讯作者:
    Robin Murphy
Preliminary Observation of HRI in Robot-Assisted Medical Response
HRI 在机器人辅助医疗救治中的初步观察
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robin Murphy;Masashi Konyo;Satoshi Tadokoro;Pedro Davalas;Gabe Knezke;Maarten Van Zomeren
  • 通讯作者:
    Maarten Van Zomeren
Application of Active Scope Camera to Forensic Investigation of Construction Accident
主动式摄像头在建筑事故法医学调查中的应用

Robin Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Murphy', 18)}}的其他基金

RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
  • 批准号:
    2306453
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-PG 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
  • 批准号:
    2043710
  • 财政年份:
    2021
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Data Collection for Robot-Oriented Disaster Site Modeling at Champlain Towers South Collapse
快速/协作研究:尚普兰塔南倒塌的面向机器人的灾难现场建模数据收集
  • 批准号:
    2140451
  • 财政年份:
    2021
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
SCC-CIVIC-FA Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-FA 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
  • 批准号:
    2133297
  • 财政年份:
    2021
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
EAGER: Documenting and Analyzing Use of Robots for COVID-19
EAGER:记录和分析机器人在 COVID-19 中的使用情况
  • 批准号:
    2032729
  • 财政年份:
    2020
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Best Viewpoints for External Robots or Sensors Assisting Other Robots
外部机器人或传感器协助其他机器人的最佳视角
  • 批准号:
    1945105
  • 财政年份:
    2019
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Machine Learning for Dehazing Unmanned Aerial System Imagery from Volcanic Eruptions
RAPID:协作研究:用于消除火山喷发无人机系统图像雾霾的机器学习
  • 批准号:
    1840873
  • 财政年份:
    2018
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Unmanned Aerial System Datasets from Hurricanes Harvey and Irma
RAPID:协作研究:飓风哈维和艾尔玛的无人机系统数据集
  • 批准号:
    1762137
  • 财政年份:
    2017
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
RAPID: Using an Unmanned Aerial Vehicle and Increased Autonomy to Improve an Unmanned Marine Vehicle Lifeguard Assistant Robot
RAPID:使用无人驾驶飞行器和增强的自主性来改进无人驾驶海上飞行器救生员助理机器人
  • 批准号:
    1637214
  • 财政年份:
    2016
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
WORKSHOP: HRI 2014 Pioneers
研讨会:HRI 2014 先锋
  • 批准号:
    1418922
  • 财政年份:
    2014
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
  • 批准号:
    2327708
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
EAGER: Completing the Lifecycle: Developing Evidence Based Models of Research Data Sharing
EAGER:完成生命周期:开发基于证据的研究数据共享模型
  • 批准号:
    2135874
  • 财政年份:
    2021
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
EAGER: STACKED INTERMEDIARIES AND POLICY USE OF RESEARCH-BASED EVIDENCE
渴望:堆叠的中介机构和基于研究的证据的政策使用
  • 批准号:
    2001455
  • 财政年份:
    2020
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
  • 批准号:
    2039653
  • 财政年份:
    2020
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
EAGER: Exploring Evidence-Based Techniques for Engineering Secure Software
EAGER:探索基于证据的安全软件工程技术
  • 批准号:
    1441444
  • 财政年份:
    2014
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
EAGER: Migration of Research and Evidence-based Instructional Technology into K-12 Schools
EAGER:将研究和循证教学技术迁移到 K-12 学校
  • 批准号:
    1428550
  • 财政年份:
    2014
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
WIDER: EAGER: Metrics to Shift Institutional Culture Toward Evidence-Based Instructional Practices
更广泛:渴望:将机构文化转向循证教学实践的指标
  • 批准号:
    1256221
  • 财政年份:
    2013
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
WIDER: EAGER: Recognizing, Assessing, and Enhancing Evidence-Based Instructional Practices in STEM at Arizona State University, Polytechnic
更广泛:渴望:认识、评估和加强亚利桑那州立大学理工学院 STEM 循证教学实践
  • 批准号:
    1256333
  • 财政年份:
    2012
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
WIDER: EAGER: A Self-Assessment of Evidence-based Instructional Practices and Outcomes in STEM-related Core Courses for STEM Majors and Non-Majors
更广泛:EAGER:针对 STEM 专业和非专业的 STEM 相关核心课程的循证教学实践和成果的自我评估
  • 批准号:
    1256529
  • 财政年份:
    2012
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
WIDER: EAGER: Evidence-Based Instructional Practices in Action: Enhancing Exemplary Teaching at the University of Nebraska-Lincoln
更广泛:渴望:基于证据的教学实践在行动:加强内布拉斯加大学林肯分校的示范性教学
  • 批准号:
    1256003
  • 财政年份:
    2012
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了