SCC-CIVIC-FA Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-FA 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
基本信息
- 批准号:2133297
- 负责人:
- 金额:$ 38.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Each year, floods, hurricanes, and wildfires result in over $125 billions of dollars of losses and loss of life. Unfortunately, Texas, the state with the greatest number of annual federally declared disasters, and over $100B in economic losses since 1980, is no exception. Often BIPOC and low-income communities are impacted the most. Low-cost ($1-12K) unmanned aerial systems (drones) and unmanned marine surface vehicles (robot boats), coupled with advances in artificial intelligence and geospatial software, could revolutionize how communities prepare, prevent, and minimize losses. However, Texas emergency managers currently lack the workforce and knowledge to investigate and implement these technologies in a meaningful way. Advances in disaster science are slow in part because researchers do not have access to comprehensive, longitudinal datasets to apply computer vision/machine learning (CV/ML) to the most pressing needs. This one-year, $384K pilot program under the direction of the Texas A&M Institute for a Disaster Resilient Texas will create a sustainable research-centric civic engagement cycle in three vulnerable communities: rural (Bryan), urban (Houston), coastal (Galveston). Emergency managers, working with research and development partners, will annually determine pressing needs. Approximately 90 students are expected to work in some form with five emergency management agencies, five universities including CMU and UC Berkeley, three companies, and two non-profits. The students, taken from the schools where 76% are economically disadvantaged, 23% African-American, and 57% Hispanic, will be trained to collect or process pre-disaster mitigation data. These activities will amplify their STEM and career certificate courses, robotics clubs, and incubator experiences. The data and data products will be immediately available to state and local pre-disaster mitigation agencies. Data in the first year can result in savings on the order of $21K per parcel by informing common planning decisions, such as protecting open space and buying out vulnerable housing. The research component will contribute to fundamental advances in disaster science, robotics, AI, and urban land use planning by providing access to data that can answer six fundamental research questions. It will create the largest comprehensive, longitudinal datasets of unmanned vehicle imagery for pre-disaster mitigation. The datasets will establish the trustworthiness of CV/ML for disaster science, develop new algorithms for recognition of vulnerabilities during different seasons and weather conditions, and further the fundamental understanding of transfer learning. Performance data will lead to an informatics-based model of sampling that captures the technical tradeoffs between accuracy, resolution, and frequency on identifying objects and scene understanding. This project is part of the CIVIC Innovation Challenge which is a collaboration of NSF, Department of Energy Vehicle Technology Office, Department of Homeland Security Science and Technology Directorate and Federal Emergency Management Agency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每年,洪水、飓风和野火造成超过1250亿美元的损失和生命损失。不幸的是,德州也不例外。自1980年以来,德州每年发生的联邦政府宣布的灾难数量最多,经济损失超过1000亿美元。通常,BIPOC和低收入社区受到的影响最大。低成本(1- 1.2万美元)的无人驾驶航空系统(无人机)和无人海上水面车辆(机器人船),再加上人工智能和地理空间软件的进步,可能会彻底改变社区准备、预防和减少损失的方式。然而,德克萨斯州的应急管理人员目前缺乏人力和知识,无法以有意义的方式调查和实施这些技术。灾害科学的进展缓慢,部分原因是研究人员无法获得全面的纵向数据集,无法将计算机视觉/机器学习(CV/ML)应用于最紧迫的需求。这个为期一年、耗资38.4万美元的试点项目由德州农工学院(Texas a&m Institute for a Disaster Resilient Texas)指导,将在三个脆弱社区(农村(布莱恩)、城市(休斯顿)、沿海(加尔维斯顿))建立一个以研究为中心的可持续的公民参与周期。应急管理人员将与研究和发展伙伴合作,每年确定迫切需求。预计约有90名学生将以某种形式在5个应急管理机构、5所大学(包括CMU和加州大学伯克利分校)、3家公司和2家非营利组织工作。这些学生来自学校,其中76%为经济弱势群体,23%为非洲裔美国人,57%为西班牙裔美国人,他们将接受收集或处理灾前减灾数据的培训。这些活动将扩大他们的STEM和职业证书课程、机器人俱乐部和孵化器经验。数据和数据产品将立即提供给州和地方防灾减灾机构。第一年的数据可以为共同的规划决策提供信息,例如保护开放空间和购买易损住房,从而为每个包裹节省约2.1万美元。研究部分将通过提供可以回答六个基本研究问题的数据,为灾害科学、机器人、人工智能和城市土地利用规划的基础进步做出贡献。它将为灾前减灾创建最大的综合、纵向无人驾驶车辆图像数据集。这些数据集将为灾害科学建立CV/ML的可信度,开发新的算法来识别不同季节和天气条件下的脆弱性,并进一步加深对迁移学习的基本理解。性能数据将导致基于信息学的采样模型,该模型捕获识别对象和场景理解的准确性,分辨率和频率之间的技术权衡。该项目是公民创新挑战赛的一部分,该挑战赛是由国家科学基金会、能源部汽车技术办公室、国土安全部科学技术局和联邦紧急事务管理局合作开展的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Murphy其他文献
Smart film actuators using biomass plastic
使用生物质塑料的智能薄膜执行器
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:4.1
- 作者:
Satoshi Tadokoro;Robin Murphy;Samuel Stover;William Brack;Masashi Konyo;Toshihiko Nishimura;Osachika Tanimoto;米山聡,田中信雄 - 通讯作者:
米山聡,田中信雄
Cooperative Navigation of Micro-Rovers Using Color Segmentation
- DOI:
10.1023/a:1008963932386 - 发表时间:
2000-08-01 - 期刊:
- 影响因子:4.300
- 作者:
Jeff Hyams;Mark W. Powell;Robin Murphy - 通讯作者:
Robin Murphy
Preliminary Observation of HRI in Robot-Assisted Medical Response
HRI 在机器人辅助医疗救治中的初步观察
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Robin Murphy;Masashi Konyo;Satoshi Tadokoro;Pedro Davalas;Gabe Knezke;Maarten Van Zomeren - 通讯作者:
Maarten Van Zomeren
Application of Active Scope Camera to Forensic Investigation of Construction Accident
主动式摄像头在建筑事故法医学调查中的应用
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Satoshi Tadokoro;Robin Murphy;Samuel Stover;William Brack;Masashi Konyo;Toshihiko Nishimura;Osachika Tanimoto - 通讯作者:
Osachika Tanimoto
Robin Murphy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Murphy', 18)}}的其他基金
RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
- 批准号:
2306453 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-PG 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
- 批准号:
2043710 - 财政年份:2021
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
EAGER: Evidence-Based Model of Adoption of Robotics for Pandemics and Natural Disasters
EAGER:采用机器人技术应对流行病和自然灾害的循证模型
- 批准号:
2125988 - 财政年份:2021
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Data Collection for Robot-Oriented Disaster Site Modeling at Champlain Towers South Collapse
快速/协作研究:尚普兰塔南倒塌的面向机器人的灾难现场建模数据收集
- 批准号:
2140451 - 财政年份:2021
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
EAGER: Documenting and Analyzing Use of Robots for COVID-19
EAGER:记录和分析机器人在 COVID-19 中的使用情况
- 批准号:
2032729 - 财政年份:2020
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Best Viewpoints for External Robots or Sensors Assisting Other Robots
外部机器人或传感器协助其他机器人的最佳视角
- 批准号:
1945105 - 财政年份:2019
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Machine Learning for Dehazing Unmanned Aerial System Imagery from Volcanic Eruptions
RAPID:协作研究:用于消除火山喷发无人机系统图像雾霾的机器学习
- 批准号:
1840873 - 财政年份:2018
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Unmanned Aerial System Datasets from Hurricanes Harvey and Irma
RAPID:协作研究:飓风哈维和艾尔玛的无人机系统数据集
- 批准号:
1762137 - 财政年份:2017
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID: Using an Unmanned Aerial Vehicle and Increased Autonomy to Improve an Unmanned Marine Vehicle Lifeguard Assistant Robot
RAPID:使用无人驾驶飞行器和增强的自主性来改进无人驾驶海上飞行器救生员助理机器人
- 批准号:
1637214 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
相似海外基金
SCC-CIVIC-FA Track B: Piloting a Decarbonization-Ready Common Home Assessment
SCC-CIVIC-FA 轨道 B:试点脱碳就绪的共同家庭评估
- 批准号:
2321865 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Continuing Grant
SCC-CIVIC-FA Track A: Assessing the Performance of Green Stormwater Infrastructure for Climate Adaptation and Coastal Resilience in the City of Cape Canaveral, Florida
SCC-CIVIC-FA 轨道 A:评估佛罗里达州卡纳维拉尔角市绿色雨水基础设施在气候适应和沿海复原力方面的绩效
- 批准号:
2321162 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Streamlining and Supporting Access to Public Assistance Programs in Louisiana
SCC-CIVIC-FA 轨道 B:简化和支持路易斯安那州的公共援助计划
- 批准号:
2322214 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B:Placekeeping: a Co-designed Model for Intergenerational Co-housing and Coalition Building in a University-Adjacent Community
SCC-CIVIC-FA 轨道 B:场所保留:大学相邻社区中代际共同住房和联盟建设的共同设计模型
- 批准号:
2322329 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Participatory Action Research to Enhance Equity and Prevent Moral Injury in Community Paramedicine
SCC-CIVIC-FA 轨道 B:参与性行动研究,以增强社区辅助医疗中的公平性并防止道德伤害
- 批准号:
2322023 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B Design for Community Resilience: Participatory Civic Technology to Close the Last-Mile Disaster Relief Gap in Puerto Rico
SCC-CIVIC-FA 社区复原力 B 轨设计:参与式公民技术缩小波多黎各最后一英里的救灾差距
- 批准号:
2321969 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Community Informed AI-Based Vehicle Technology Simulator with Behavioral Strategies to Advance Neurodiverse Independence and Employment
SCC-CIVIC-FA 轨道 B:社区知情的基于人工智能的车辆技术模拟器,具有促进神经多样性独立和就业的行为策略
- 批准号:
2322029 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track A: Targeted Micro-retrofits based on Building Envelope Scans using Drones, GPR, and Deep Neural Networks
SCC-CIVIC-FA 轨道 A:基于使用无人机、探地雷达和深度神经网络进行建筑包络扫描的有针对性的微改造
- 批准号:
2322242 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Inclusive Insurance: Improving the Post-Flood Financial Resiliency of Low- and Moderate-Income Households
SCC-CIVIC-FA 轨道 B:普惠保险:提高中低收入家庭的洪水后财务弹性
- 批准号:
2318137 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Everyday Respect: Measuring & Improving Communication During Motor Vehicle Stops
SCC-CIVIC-FA 轨道 B:日常尊重:测量
- 批准号:
2322026 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant














{{item.name}}会员




