SCC-CIVIC-FA Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-FA 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
基本信息
- 批准号:2133297
- 负责人:
- 金额:$ 38.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Each year, floods, hurricanes, and wildfires result in over $125 billions of dollars of losses and loss of life. Unfortunately, Texas, the state with the greatest number of annual federally declared disasters, and over $100B in economic losses since 1980, is no exception. Often BIPOC and low-income communities are impacted the most. Low-cost ($1-12K) unmanned aerial systems (drones) and unmanned marine surface vehicles (robot boats), coupled with advances in artificial intelligence and geospatial software, could revolutionize how communities prepare, prevent, and minimize losses. However, Texas emergency managers currently lack the workforce and knowledge to investigate and implement these technologies in a meaningful way. Advances in disaster science are slow in part because researchers do not have access to comprehensive, longitudinal datasets to apply computer vision/machine learning (CV/ML) to the most pressing needs. This one-year, $384K pilot program under the direction of the Texas A&M Institute for a Disaster Resilient Texas will create a sustainable research-centric civic engagement cycle in three vulnerable communities: rural (Bryan), urban (Houston), coastal (Galveston). Emergency managers, working with research and development partners, will annually determine pressing needs. Approximately 90 students are expected to work in some form with five emergency management agencies, five universities including CMU and UC Berkeley, three companies, and two non-profits. The students, taken from the schools where 76% are economically disadvantaged, 23% African-American, and 57% Hispanic, will be trained to collect or process pre-disaster mitigation data. These activities will amplify their STEM and career certificate courses, robotics clubs, and incubator experiences. The data and data products will be immediately available to state and local pre-disaster mitigation agencies. Data in the first year can result in savings on the order of $21K per parcel by informing common planning decisions, such as protecting open space and buying out vulnerable housing. The research component will contribute to fundamental advances in disaster science, robotics, AI, and urban land use planning by providing access to data that can answer six fundamental research questions. It will create the largest comprehensive, longitudinal datasets of unmanned vehicle imagery for pre-disaster mitigation. The datasets will establish the trustworthiness of CV/ML for disaster science, develop new algorithms for recognition of vulnerabilities during different seasons and weather conditions, and further the fundamental understanding of transfer learning. Performance data will lead to an informatics-based model of sampling that captures the technical tradeoffs between accuracy, resolution, and frequency on identifying objects and scene understanding. This project is part of the CIVIC Innovation Challenge which is a collaboration of NSF, Department of Energy Vehicle Technology Office, Department of Homeland Security Science and Technology Directorate and Federal Emergency Management Agency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每年,洪水,飓风和野火都会造成超过1,250亿美元的损失和生命损失。不幸的是,德克萨斯州是年度联邦宣布灾难数量最多的州,自1980年以来的经济损失超过100B美元,也不例外。通常对BIPOC和低收入社区受到影响最大。 低成本($ 1-12k)无人驾驶系统(无人机)和无人海洋表面车辆(机器人船),再加上人工智能和地理空间软件的进步,可以彻底改变社区的准备,预防和最小化损失的方式。但是,德克萨斯州应急管理人员目前缺乏以有意义的方式调查和实施这些技术的劳动力和知识。灾难科学的进步很慢,部分原因是研究人员无法访问全面的纵向数据集来将计算机视觉/机器学习(CV/ML)应用于最紧迫的需求。这项为期一年的38.4万美元的试点计划在得克萨斯州A&M灾难研究所的指导下,得克萨斯州的灾难弹性研究所将在三个脆弱的社区中创建一个以研究为中心的以研究为中心的公民参与周期:农村(Bryan),Urban(Urban),Urban(Houston),沿海地区(Galveston)。与研发合作伙伴合作的应急管理人员每年将确定紧迫的需求。预计大约有90名学生将以五个紧急管理机构,包括CMU和加州大学伯克利分校在内的五所大学,三家公司和两家非营利组织的形式工作。这些学生从经济上处于不利地位的76%的学校,23%的非裔美国人和57%的西班牙裔学校,他们将接受培训,以收集或处理污点前缓解数据。这些活动将扩大其STEM和职业证书课程,机器人俱乐部和孵化器体验。数据和数据产品将立即适用于州和地方前缓解机构。第一年的数据可以通过告知共同的计划决策,例如保护开放空间和购买脆弱的住房,从而节省每个包裹的订单。 该研究组成部分将通过提供可以回答六个基本研究问题的数据,从而有助于灾难科学,机器人技术,AI和城市土地利用计划的基本进步。它将创建最大的无人车辆图像的全面,纵向数据集,以减轻降水前。数据集将建立简历/ML对灾难科学的可信赖性,开发新算法以识别不同季节和天气状况的脆弱性,并进一步对转移学习的基本了解。性能数据将导致基于信息学的采样模型,该模型捕获了识别对象和场景理解的准确性,分辨率和频率之间的技术权衡。该项目是公民创新挑战赛的一部分,该挑战是NSF的合作,能源车辆技术局,国土安全科学技术局和联邦紧急事务管理局和联邦紧急事务管理机构。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Murphy其他文献
Smart film actuators using biomass plastic
使用生物质塑料的智能薄膜执行器
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:4.1
- 作者:
Satoshi Tadokoro;Robin Murphy;Samuel Stover;William Brack;Masashi Konyo;Toshihiko Nishimura;Osachika Tanimoto;米山聡,田中信雄 - 通讯作者:
米山聡,田中信雄
Preliminary Observation of HRI in Robot-Assisted Medical Response
HRI 在机器人辅助医疗救治中的初步观察
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Robin Murphy;Masashi Konyo;Satoshi Tadokoro;Pedro Davalas;Gabe Knezke;Maarten Van Zomeren - 通讯作者:
Maarten Van Zomeren
Application of Active Scope Camera to Forensic Investigation of Construction Accident
主动式摄像头在建筑事故法医学调查中的应用
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Satoshi Tadokoro;Robin Murphy;Samuel Stover;William Brack;Masashi Konyo;Toshihiko Nishimura;Osachika Tanimoto - 通讯作者:
Osachika Tanimoto
Robin Murphy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Murphy', 18)}}的其他基金
RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
- 批准号:
2306453 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-PG 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
- 批准号:
2043710 - 财政年份:2021
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
EAGER: Evidence-Based Model of Adoption of Robotics for Pandemics and Natural Disasters
EAGER:采用机器人技术应对流行病和自然灾害的循证模型
- 批准号:
2125988 - 财政年份:2021
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Data Collection for Robot-Oriented Disaster Site Modeling at Champlain Towers South Collapse
快速/协作研究:尚普兰塔南倒塌的面向机器人的灾难现场建模数据收集
- 批准号:
2140451 - 财政年份:2021
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
EAGER: Documenting and Analyzing Use of Robots for COVID-19
EAGER:记录和分析机器人在 COVID-19 中的使用情况
- 批准号:
2032729 - 财政年份:2020
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
Best Viewpoints for External Robots or Sensors Assisting Other Robots
外部机器人或传感器协助其他机器人的最佳视角
- 批准号:
1945105 - 财政年份:2019
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Machine Learning for Dehazing Unmanned Aerial System Imagery from Volcanic Eruptions
RAPID:协作研究:用于消除火山喷发无人机系统图像雾霾的机器学习
- 批准号:
1840873 - 财政年份:2018
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Unmanned Aerial System Datasets from Hurricanes Harvey and Irma
RAPID:协作研究:飓风哈维和艾尔玛的无人机系统数据集
- 批准号:
1762137 - 财政年份:2017
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
RAPID: Using an Unmanned Aerial Vehicle and Increased Autonomy to Improve an Unmanned Marine Vehicle Lifeguard Assistant Robot
RAPID:使用无人驾驶飞行器和增强的自主性来改进无人驾驶海上飞行器救生员助理机器人
- 批准号:
1637214 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
相似国自然基金
矛盾体验对边界员工组织间公民行为的影响机制研究
- 批准号:72302081
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政府信息干预促进公民合作生产的机理与路径:基于数字治理平台的研究
- 批准号:72304155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于干预映射的公民逝世后器官捐献者家属数字心理支持模式的构建及实证研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于干预映射的公民逝世后器官捐献者家属数字心理支持模式的构建及实证研究
- 批准号:72204272
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于真实世界数据的公民逝世后器官捐献肾移植效果预测模型及其决策影响研究
- 批准号:72104085
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
SCC-CIVIC-FA Track B: Piloting a Decarbonization-Ready Common Home Assessment
SCC-CIVIC-FA 轨道 B:试点脱碳就绪的共同家庭评估
- 批准号:
2321865 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
Continuing Grant
SCC-CIVIC-FA Track A: Assessing the Performance of Green Stormwater Infrastructure for Climate Adaptation and Coastal Resilience in the City of Cape Canaveral, Florida
SCC-CIVIC-FA 轨道 A:评估佛罗里达州卡纳维拉尔角市绿色雨水基础设施在气候适应和沿海复原力方面的绩效
- 批准号:
2321162 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Streamlining and Supporting Access to Public Assistance Programs in Louisiana
SCC-CIVIC-FA 轨道 B:简化和支持路易斯安那州的公共援助计划
- 批准号:
2322214 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B:Placekeeping: a Co-designed Model for Intergenerational Co-housing and Coalition Building in a University-Adjacent Community
SCC-CIVIC-FA 轨道 B:场所保留:大学相邻社区中代际共同住房和联盟建设的共同设计模型
- 批准号:
2322329 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Participatory Action Research to Enhance Equity and Prevent Moral Injury in Community Paramedicine
SCC-CIVIC-FA 轨道 B:参与性行动研究,以增强社区辅助医疗中的公平性并防止道德伤害
- 批准号:
2322023 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Standard Grant