Brownian bridges for stochastic problems in chemical sciences
化学科学中随机问题的布朗桥
基本信息
- 批准号:2126230
- 负责人:
- 金额:$ 29.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Continuous random walks – noisy processes that drift in time – are omnipresent in a wide range of chemical fields such as in studying polymer molecule dynamics, identifying chemical reaction pathways, and quantifying heat and mass transfer processes at the molecular scale. In many practical situations, one is interested in examining random walks whose paths start and end within specified sets of values that represent distinct chemical species or molecule configurations. Such ideas would allow one to quantify rare events in a chemical process, or conversely, quantify the most probable configurations and reaction pathways. One promising methodology to systematically generate these random walks is to make use of a concept known as a stochastic bridge, an idea that has been used in chemical process control theory to guide noisy processes to safe and profitable end states. However, this idea has yet to be adapted to applications in chemistry despite its potential for a wide range of applications in polymer physics and molecular simulations. This proposal formulates stochastic bridges for two chemistry applications where traditional techniques to account for the noise are computationally inefficient. The first application considers the growth of semi-flexible polymer chains of a specific configuration, which is useful when studying DNA molecule behavior during biochemical processes. The second application focuses on efficiently examining different reaction pathways during crystallization, which is vital for manufacturing pharmaceuticals. The investigators will disseminate their results through national conferences and will provide science demonstrations to a local science museum that will revolve around the theme of random walks.To computationally study the wide range of molecular-scale chemical processes with dynamics governed by continuous random walks, two primary research objectives will be pursued by the research team. The first objective is to develop highly efficient numerical techniques for stochastic bridges that condition continuous random walks to end in a specified region, stay in a given region, or reach one region before another. Currently, all stochastic bridges are created by solving a Backwards Fokker Planck (BFP) equation, a partial differential equation (PDE), and then using this solution to compute an effective drift that guides paths towards the desired region of phase space. The largest roadblock behind this approach occurs when one cannot readily compute the PDE solution exactly, which is the case for complex or high dimensional systems. The first objective will use the asymptotic properties of the BFP equation to generate an approximate drift that guides random walks to the correct regions of phase space, and determine ways to correct (i.e., re-weight) any errors incurred from this approximation. This procedure will create a computationally efficient method to generate conditioned random walks that can scale to higher dimensions and can be used for complex molecular systems. The second objective will employ these ideas in two applications. The first example will focus on simulating the dynamics of a continuous polymer chain in an external field - a canonical problem in all polymer field theories. The proposed research program will demonstrate that a stochastic bridge can effectively sample polymer conformations that end with a given topology or end with a range of final energies, the latter of which is important for rare event sampling. The second example will consider nucleation pathways during crystallization and will show that a bridge can efficiently sample paths in a free energy landscape that reach one crystal conformation (polymorph) before others, ultimately making it possible to control selectivity between crystal product polymorphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连续随机游走-随时间漂移的噪声过程-在广泛的化学领域中无处不在,例如研究聚合物分子动力学,识别化学反应途径,以及在分子尺度上量化传热和传质过程。在许多实际情况下,人们感兴趣的是研究随机游走,其路径的起点和终点都在代表不同化学物种或分子构型的指定值集合内。这些想法将允许人们量化化学过程中的罕见事件,或者相反,量化最可能的配置和反应途径。一个有前途的方法来系统地产生这些随机游走是利用一个被称为随机桥的概念,一个想法,已被用于化学过程控制理论,以指导噪声过程的安全和有利可图的最终状态。然而,这个想法还没有适应化学中的应用,尽管它在聚合物物理和分子模拟的广泛应用的潜力。该建议制定了两个化学应用的随机桥,传统的技术来考虑噪音是计算效率低下。第一个应用程序考虑了特定配置的半柔性聚合物链的生长,这在生物化学过程中研究DNA分子行为时很有用。第二个应用程序的重点是有效地检查结晶过程中的不同反应途径,这对制药至关重要。研究人员将通过全国性会议传播他们的成果,并将围绕随机游走的主题向当地科学博物馆提供科学演示。为了通过计算研究具有连续随机游走动力学的广泛分子尺度化学过程,研究小组将追求两个主要研究目标。第一个目标是开发高效的随机桥的条件连续随机游动结束在一个指定的区域,留在一个给定的区域,或到达一个区域之前,另一个数值技术。目前,所有的随机桥都是通过求解后向福克-普朗克(BFP)方程、偏微分方程(PDE),然后使用该解计算有效漂移来创建的,该漂移将路径引导到相空间的期望区域。这种方法背后的最大障碍发生在人们不能容易地精确计算PDE解的时候,这是复杂或高维系统的情况。第一个目标将使用BFP方程的渐近性质来生成将随机游走引导到相空间的正确区域的近似漂移,并确定校正(即,重新加权)由该近似引起的任何误差。这个过程将创建一个计算效率高的方法来生成条件随机游走,可以扩展到更高的维度,并可用于复杂的分子系统。第二个目标将在两个应用中使用这些想法。第一个例子将集中在模拟一个连续的聚合物链在外场的动力学-在所有聚合物场论的典型问题。拟议的研究计划将证明,随机桥可以有效地采样聚合物构象,以给定的拓扑结构结束或以一系列最终能量结束,后者对于稀有事件采样很重要。第二个例子将考虑结晶过程中的成核途径,并将表明桥可以有效地采样自由能景观中达到一种晶体构象的路径(多晶型物)之前,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的评估来支持的。影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brownian bridges for stochastic chemical processes—An approximation method based on the asymptotic behavior of the backward Fokker–Planck equation
随机化学过程的布朗桥 — 基于向后福克渐近行为的近似方法 — 普朗克方程
- DOI:10.1063/5.0080540
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Shiyan;Venkatesh, Anirudh;Ramkrishna, Doraiswami;Narsimhan, Vivek
- 通讯作者:Narsimhan, Vivek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Narsimhan其他文献
Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying
- DOI:
10.1016/j.ijpharm.2023.122746 - 发表时间:
2023-03-25 - 期刊:
- 影响因子:
- 作者:
Kyu Yoon;Vivek Narsimhan - 通讯作者:
Vivek Narsimhan
Randomized-field microwave-assisted pharmaceutical lyophilization with closed-loop control
带闭环控制的随机场微波辅助制药冻干
- DOI:
10.1038/s41598-025-91642-4 - 发表时间:
2025-03-27 - 期刊:
- 影响因子:3.900
- 作者:
Alina A. Alexeenko;Ahmad Darwish;Drew Strongrich;Petr Kazarin;Chanakya Patil;Cole W. Tower;Isaac S. Wheeler;Eric Munson;Qi Zhou;Vivek Narsimhan;Kyu Yoon;Steven L. Nail;Anthony Cofer;Justin Stanbro;Harshil Renawala;Daniel Roth;Francis DeMarco;Justin Griffiths;Dimitrios Peroulis - 通讯作者:
Dimitrios Peroulis
Vivek Narsimhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Narsimhan', 18)}}的其他基金
Interplay between orientation and lift forces on non-spherical particles in complex fluids
复杂流体中非球形颗粒的方向力和升力之间的相互作用
- 批准号:
2341154 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics and Stability of Multi-Component Lipid Vesicles in Flow
合作研究:多组分脂质囊泡流动的动力学和稳定性
- 批准号:
2147559 - 财政年份:2022
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
相似海外基金
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Structural Identification and Condition Assessment of Prestressed Concrete Bridges in Marine Environment Using Heterogeneous Test Data
利用异质试验数据进行海洋环境中预应力混凝土桥梁的结构识别和状态评估
- 批准号:
24K17344 - 财政年份:2024
- 资助金额:
$ 29.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Building Bridges to Use-Inspired Research and Science-Informed Practices
会议:搭建通向使用启发的研究和科学实践的桥梁
- 批准号:
2309541 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
New Bridges to Gromov-Witten Theory
通往格罗莫夫-维滕理论的新桥梁
- 批准号:
2302116 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
- 批准号:
23KF0241 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Automation of inspection of bridges and tunnels
桥梁和隧道检测自动化
- 批准号:
23K03991 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Bridges to Support Talented, Low-Income Engineering Students
搭建桥梁支持有才华的低收入工程学生
- 批准号:
2220899 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
GP-UP: Immersive Connections in Geosciences: Paleontological Field Experiences and Bridges to Robust Career Training Opportunities
GP-UP:地球科学的沉浸式联系:古生物学现场经验和通往强大职业培训机会的桥梁
- 批准号:
2227897 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant
ERI: Enhancing Life-cycle Resilience of Cable-Stayed Bridges to Extreme Winds through Areo-Structural Optimization
ERI:通过区域结构优化增强斜拉桥生命周期对极端风的抵御能力
- 批准号:
2301824 - 财政年份:2023
- 资助金额:
$ 29.45万 - 项目类别:
Standard Grant














{{item.name}}会员




