Brownian bridges for stochastic problems in chemical sciences

化学科学中随机问题的布朗桥

基本信息

  • 批准号:
    2126230
  • 负责人:
  • 金额:
    $ 29.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Continuous random walks – noisy processes that drift in time – are omnipresent in a wide range of chemical fields such as in studying polymer molecule dynamics, identifying chemical reaction pathways, and quantifying heat and mass transfer processes at the molecular scale. In many practical situations, one is interested in examining random walks whose paths start and end within specified sets of values that represent distinct chemical species or molecule configurations. Such ideas would allow one to quantify rare events in a chemical process, or conversely, quantify the most probable configurations and reaction pathways. One promising methodology to systematically generate these random walks is to make use of a concept known as a stochastic bridge, an idea that has been used in chemical process control theory to guide noisy processes to safe and profitable end states. However, this idea has yet to be adapted to applications in chemistry despite its potential for a wide range of applications in polymer physics and molecular simulations. This proposal formulates stochastic bridges for two chemistry applications where traditional techniques to account for the noise are computationally inefficient. The first application considers the growth of semi-flexible polymer chains of a specific configuration, which is useful when studying DNA molecule behavior during biochemical processes. The second application focuses on efficiently examining different reaction pathways during crystallization, which is vital for manufacturing pharmaceuticals. The investigators will disseminate their results through national conferences and will provide science demonstrations to a local science museum that will revolve around the theme of random walks.To computationally study the wide range of molecular-scale chemical processes with dynamics governed by continuous random walks, two primary research objectives will be pursued by the research team. The first objective is to develop highly efficient numerical techniques for stochastic bridges that condition continuous random walks to end in a specified region, stay in a given region, or reach one region before another. Currently, all stochastic bridges are created by solving a Backwards Fokker Planck (BFP) equation, a partial differential equation (PDE), and then using this solution to compute an effective drift that guides paths towards the desired region of phase space. The largest roadblock behind this approach occurs when one cannot readily compute the PDE solution exactly, which is the case for complex or high dimensional systems. The first objective will use the asymptotic properties of the BFP equation to generate an approximate drift that guides random walks to the correct regions of phase space, and determine ways to correct (i.e., re-weight) any errors incurred from this approximation. This procedure will create a computationally efficient method to generate conditioned random walks that can scale to higher dimensions and can be used for complex molecular systems. The second objective will employ these ideas in two applications. The first example will focus on simulating the dynamics of a continuous polymer chain in an external field - a canonical problem in all polymer field theories. The proposed research program will demonstrate that a stochastic bridge can effectively sample polymer conformations that end with a given topology or end with a range of final energies, the latter of which is important for rare event sampling. The second example will consider nucleation pathways during crystallization and will show that a bridge can efficiently sample paths in a free energy landscape that reach one crystal conformation (polymorph) before others, ultimately making it possible to control selectivity between crystal product polymorphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
连续随机游走-随时间漂移的噪声过程-在广泛的化学领域无所不在,例如研究聚合物分子动力学,识别化学反应途径,以及在分子尺度上量化传热和传质过程。在许多实际情况下,人们感兴趣的是检查随机行走,其路径在代表不同化学物质或分子构型的指定值集内开始和结束。这样的想法将允许人们量化化学过程中的罕见事件,或者相反,量化最可能的构型和反应途径。一种有希望系统地生成这些随机漫步的方法是利用随机桥的概念,这一概念已被用于化学过程控制理论,以引导有噪声的过程进入安全和有利可图的最终状态。然而,尽管这种想法在聚合物物理和分子模拟中有广泛的应用潜力,但它还没有适应于化学应用。该建议为两种化学应用制定了随机桥,在这些应用中,传统的计算噪声的技术在计算上效率低下。第一个应用考虑了特定构型的半柔性聚合物链的生长,这在研究生物化学过程中的DNA分子行为时很有用。第二个应用侧重于有效地检查结晶过程中的不同反应途径,这对制造药物至关重要。研究人员将通过全国会议传播他们的研究结果,并将在当地一家以随机漫步为主题的科学博物馆进行科学演示。为了计算研究由连续随机游走控制的大范围分子尺度化学过程,研究小组将追求两个主要研究目标。第一个目标是为随机桥开发高效的数值技术,这些随机桥的条件是连续随机行走在指定区域结束,停留在给定区域,或者在另一个区域之前到达一个区域。目前,所有的随机桥都是通过求解一个向后的福克-普朗克(BFP)方程和一个偏微分方程(PDE)来创建的,然后使用这个解来计算一个有效的漂移,该漂移将路径引导到相空间的期望区域。这种方法背后最大的障碍出现在无法准确计算PDE解决方案时,这是复杂或高维系统的情况。第一个目标将使用BFP方程的渐近特性来生成一个近似漂移,该漂移引导随机漫步到相空间的正确区域,并确定纠正(即重新加权)该近似产生的任何误差的方法。该程序将创建一种计算效率高的方法来生成条件随机游走,这种随机游走可以扩展到更高的维度,并可用于复杂的分子系统。第二个目标将在两个应用程序中使用这些想法。第一个例子将着重于模拟连续聚合物链在外场中的动力学,这是所有聚合物场理论中的典型问题。提出的研究计划将证明随机桥可以有效地采样以给定拓扑结束或以最终能量范围结束的聚合物构象,后者对于罕见事件采样很重要。第二个例子将考虑结晶过程中的成核途径,并将表明桥可以有效地在自由能景观中采样路径,在其他路径之前到达一个晶体构象(多晶型),最终使控制晶体产物多晶型之间的选择性成为可能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brownian bridges for stochastic chemical processes—An approximation method based on the asymptotic behavior of the backward Fokker–Planck equation
随机化学过程的布朗桥 — 基于向后福克渐近行为的近似方法 — 普朗克方程
  • DOI:
    10.1063/5.0080540
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Shiyan;Venkatesh, Anirudh;Ramkrishna, Doraiswami;Narsimhan, Vivek
  • 通讯作者:
    Narsimhan, Vivek
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Narsimhan其他文献

Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying
  • DOI:
    10.1016/j.ijpharm.2023.122746
  • 发表时间:
    2023-03-25
  • 期刊:
  • 影响因子:
  • 作者:
    Kyu Yoon;Vivek Narsimhan
  • 通讯作者:
    Vivek Narsimhan
Randomized-field microwave-assisted pharmaceutical lyophilization with closed-loop control
带闭环控制的随机场微波辅助制药冻干
  • DOI:
    10.1038/s41598-025-91642-4
  • 发表时间:
    2025-03-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Alina A. Alexeenko;Ahmad Darwish;Drew Strongrich;Petr Kazarin;Chanakya Patil;Cole W. Tower;Isaac S. Wheeler;Eric Munson;Qi Zhou;Vivek Narsimhan;Kyu Yoon;Steven L. Nail;Anthony Cofer;Justin Stanbro;Harshil Renawala;Daniel Roth;Francis DeMarco;Justin Griffiths;Dimitrios Peroulis
  • 通讯作者:
    Dimitrios Peroulis

Vivek Narsimhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vivek Narsimhan', 18)}}的其他基金

Interplay between orientation and lift forces on non-spherical particles in complex fluids
复杂流体中非球形颗粒的方向力和升力之间的相互作用
  • 批准号:
    2341154
  • 财政年份:
    2024
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics and Stability of Multi-Component Lipid Vesicles in Flow
合作研究:多组分脂质囊泡流动的动力学和稳定性
  • 批准号:
    2147559
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
Structural Identification and Condition Assessment of Prestressed Concrete Bridges in Marine Environment Using Heterogeneous Test Data
利用异质试验数据进行海洋环境中预应力混凝土桥梁的结构识别和状态评估
  • 批准号:
    24K17344
  • 财政年份:
    2024
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Building Bridges to Use-Inspired Research and Science-Informed Practices
会议:搭建通向使用启发的研究和科学实践的桥梁
  • 批准号:
    2309541
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
New Bridges to Gromov-Witten Theory
通往格罗莫夫-维滕理论的新桥梁
  • 批准号:
    2302116
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
  • 批准号:
    23KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Automation of inspection of bridges and tunnels
桥梁和隧道检测自动化
  • 批准号:
    23K03991
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peach State Bridges to the Doctorate
桃州通往博士学位的桥梁
  • 批准号:
    10714739
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
Building Bridges to Support Talented, Low-Income Engineering Students
搭建桥梁支持有才华的低收入工程学生
  • 批准号:
    2220899
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
GP-UP: Immersive Connections in Geosciences: Paleontological Field Experiences and Bridges to Robust Career Training Opportunities
GP-UP:地球科学的沉浸式联系:古生物学现场经验和通往强大职业培训机会的桥梁
  • 批准号:
    2227897
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
ERI: Enhancing Life-cycle Resilience of Cable-Stayed Bridges to Extreme Winds through Areo-Structural Optimization
ERI:通过区域结构优化增强斜拉桥生命周期对极端风的抵御能力
  • 批准号:
    2301824
  • 财政年份:
    2023
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了