Data-Enabled Theoretical Understanding of the Structure and Properties of Solvent-cast Polymer Nanocomposites
基于数据的理论理解溶剂浇铸聚合物纳米复合材料的结构和性能
基本信息
- 批准号:2126660
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYFrom sport shoes to credit cards, materials consisting of synthetic polymers are ubiquitous in present-day society. Adding a filler material to the polymer can lead to novel properties that enable specialized applications such as extraordinarily hard coatings, fire-resistant fabrics, or modern car tires. Filler materials consist of small nano-sized particles that are intended to distribute homogeneously within the polymer. However, like water and oil, the nanoparticles and polymers are known to have an intrinsic tendency to separate from each other and form undesired nanoparticle agglomerations instead of a homogeneous nanocomposite. Interestingly, there is experimental evidence that the process of creating the nanocomposite can nevertheless lead to the formation of homogeneous dispersions, with desired properties. The goal of the proposed work is to quantitatively understand the science behind how processing determines the dispersion states and the ensuing mechanical properties of polymer-nanoparticle mixtures. To this end, the project will combine data-rich methods, theoretical calculations, and computer simulations. In a first step, a machine learning algorithm will be trained on the available, large database of polymer-nanoparticle composites, their preparation methods, and the resulting dispersion states. These tools, when implemented, will be able to identify critical regions of parameter space where interesting phenomena occur, e.g., where the material goes from well-mixed to agglomerated nanoparticles. The work will then focus on these regions and use a combination of computer simulations and theoretical calculations to delineate the physical mechanisms that control the nanoparticle dispersion states and the ensuing mechanical properties of the nanocomposite material. This integrated data science-theory-simulation-experimental data workflow will enable the determination of what the optimal nanoparticle dispersion states are for a set of desired mechanical properties and how processing can be manipulated to achieve these states. The project will train students in integrated design and modeling of next-generation materials, develop online learning modules related to nanocomposites and their applications, and implement a shared, open source repository of research data and machine learning tools for wide dissemination in the scientific community.TECHNICAL SUMMARYIt is now well-accepted that adding nanoparticles (NPs) to commodity polymers can lead to hybrid materials with substantially improved properties. The most significant complication encountered, which frequently prevents these property improvements from being realized, is that inorganic NPs are hydrophilic while organic polymers are hydrophobic. These physical mixtures thus have a strong propensity to phase separate. In contrast to these expectations, a large body of experiments has shown that the process of creating these nanocomposites, e.g., by solvent casting, can leverage a variety of non-equilibrium phenomena to yield dramatically different but temporally stable NP dispersion states. A canonical example is the competitive sorption of the polymer in solution to the NP surface; this leads to the formation of a long-lived bound polymer layer which sterically stabilizes well-dispersed NPs. The goal of this proposed work is to quantitatively understand the poorly enunciated science underpinning solution-based processing protocols so as to obtain NP dispersion states with optimized mechanical properties at will.The proposed work will synergistically combine data rich methods and theory/computer simulations on two inter-related tasks: (1) An ML algorithm will be trained on the available, large database of polymer/NP composites that have been experimentally cast from a range of different solvents and the NP dispersion states that result after solvent removal. After training, these ML methods will be able to identify critical regions of parameter space where interesting phenomena occur, e.g., where the material goes from well-mixed to agglomerated NPs. The work will then focus on these regions and use a combination of computer simulations and theory to delineate the physics that control the solvent casting process. (2) The role of different NP dispersion states on linear and non-linear mechanical properties will then be quantitatively enumerated. This integrated data science-theory-simulation-experimental data workflow will enable answers to several key scientific questions: (1) What is the space of polymer-NP-common solvent interactions that yield different NP dispersions? Previous work has suggested that the critical parameter is the effective solvent mediated polymer-NP interaction energy. Is this description accurate, and can effective NP-NP interactions be derived through known metrics such as solubility parameters and measured NP surface potentials? (2) What is the structure of the bound layer formed when polymer/NP interactions are more favorable than solvent/NP interactions? How does the structure of this bound layer depend on solvent quality and how does it yield good dispersion? (3) Going beyond casting from one solvent, how does the addition of a second, non-solvent allows for the precipitation of a NP-polymer composite with well-dispersed NPs? Does this process really only utilize entropic factors in effecting NP dispersion? (4) Under what conditions do kinetic issues, such as solution viscosity, become important determinants of NP dispersion? (5) How does NP dispersion state affect mechanical properties in the linear and non-linear regimes? Can the optimal NP dispersion states (and the associated solvent casting conditions) for mechanical properties be located and understood?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从运动鞋到信用卡,由合成聚合物组成的材料在当今社会中无处不在。向聚合物中添加填充材料可以产生新的特性,从而实现特殊应用,例如非常坚硬的涂层,耐火织物或现代汽车轮胎。填料材料由旨在均匀分布在聚合物内的小纳米尺寸颗粒组成。然而,像水和油一样,已知纳米颗粒和聚合物具有彼此分离并形成不期望的纳米颗粒附聚物而不是均匀的纳米复合材料的内在趋势。有趣的是,有实验证据表明,产生纳米复合材料的过程仍然可以导致形成具有所需性能的均匀分散体。拟议工作的目标是定量地了解加工过程如何决定聚合物-纳米颗粒混合物的分散状态和随后的机械性能背后的科学。为此,该项目将结合联合收割机数据丰富的方法,理论计算和计算机模拟。在第一步中,机器学习算法将在聚合物-纳米颗粒复合材料的可用大型数据库、其制备方法以及由此产生的分散状态上进行训练。这些工具在实施后将能够识别参数空间中发生有趣现象的关键区域,例如,其中材料从充分混合到聚集的纳米颗粒。然后,这项工作将集中在这些区域,并使用计算机模拟和理论计算相结合,以描绘控制纳米颗粒分散状态和随后的纳米复合材料的机械性能的物理机制。这种集成的数据科学-理论-模拟-实验数据工作流程将能够确定一组所需机械性能的最佳纳米颗粒分散状态,以及如何操作处理以实现这些状态。该项目将培训学生进行下一代材料的综合设计和建模,开发与纳米复合材料及其应用相关的在线学习模块,并实施一个共享的,研究数据和机器学习工具的开源存储库,可在科学界广泛传播。技术概述现在人们普遍认为,可以产生具有显著改进的性能的杂化材料。遇到的最重要的复杂性,这经常阻止这些性能的改善被实现,是无机纳米粒子是亲水性的,而有机聚合物是疏水性的。因此,这些物理混合物具有强烈的相分离倾向。与这些预期相反,大量实验表明,制造这些纳米复合材料的过程,例如,通过溶剂浇铸,可以利用各种非平衡现象产生显著不同但暂时稳定的NP分散状态。一个典型的例子是溶液中的聚合物对NP表面的竞争性吸附;这导致形成长寿命的结合聚合物层,其在空间上稳定分散良好的NP。这项工作的目标是定量地了解基于溶液的处理方案的基础科学,以便随意获得具有优化机械性能的NP分散状态。这项工作将协同地将联合收割机数据丰富的方法和理论/计算机模拟结合在两个相互关联的任务上:(1)ML算法将在聚合物/NP复合材料的可用的大型数据库上进行训练,所述聚合物/NP复合材料已经从一系列不同的溶剂和溶剂去除后产生的NP分散状态实验性地浇铸。在训练之后,这些ML方法将能够识别参数空间中发生有趣现象的关键区域,例如,其中材料从充分混合到附聚的NP。这项工作将集中在这些地区,并使用计算机模拟和理论相结合,以描绘控制溶剂浇铸过程的物理。(2)不同的NP分散状态的线性和非线性力学性能的作用,然后将被定量枚举。这种集成的数据科学-理论-模拟-实验数据工作流程将能够回答几个关键的科学问题:(1)产生不同NP分散体的聚合物-NP-常见溶剂相互作用的空间是什么?以前的工作表明,关键参数是有效的溶剂介导的聚合物-NP相互作用能。这种描述是否准确,有效的NP-NP相互作用是否可以通过已知的指标(如溶解度参数和测量的NP表面电位)推导出来?(2)当聚合物/NP相互作用比溶剂/NP相互作用更有利时,形成的结合层的结构是什么?这种结合层的结构如何取决于溶剂的质量,以及它如何产生良好的分散?(3)除了从一种溶剂浇铸之外,添加第二种非溶剂如何允许具有良好分散的NP的NP-聚合物复合物沉淀?这个过程真的只利用熵因素来影响NP分散吗?(4)在什么条件下动力学问题,如溶液粘度,成为NP分散的重要决定因素?(5)NP分散状态如何影响线性和非线性区域的力学性能?能找到并理解用于机械性能的最佳NP分散状态(以及相关的溶剂浇铸条件)吗?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanat Kumar其他文献
Feasibility of Hydrate-Based Carbon dioxide Sequestration in Arabian Sea Sediments
- DOI:
10.1016/j.cej.2024.155696 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Shweta Negi;Avinash V. Palodkar;Suhas Suresh Shetye;Sanat Kumar;Asheesh Kumar - 通讯作者:
Asheesh Kumar
Studies on Carbon Number Distribution of High Melting Microcrystalline Waxes
高熔点微晶蜡碳数分布的研究
- DOI:
10.1081/lft-120018171 - 发表时间:
2003 - 期刊:
- 影响因子:1.5
- 作者:
Sanat Kumar;A. Gupta;K. Agrawal - 通讯作者:
K. Agrawal
Clustering in binary mixtures of axial multipoles confined to a two-dimensional plane
- DOI:
10.1016/j.physa.2014.08.065 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Manjori Mukherjee;Sanat Kumar;Pankaj Mishra - 通讯作者:
Pankaj Mishra
Enhanced catalytic co-conversion of biomass and plastic volatiles using metal-enhanced HZSM-5 extrudates: a study on pyro-kinetic, synergistic, and thermodynamic efficacy
使用金属增强的 HZSM-5 挤出物增强生物质和塑料挥发物的催化共转化:热动力学、协同作用和热力学功效的研究
- DOI:
10.1007/s13399-025-06675-6 - 发表时间:
2025-03-04 - 期刊:
- 影响因子:4.100
- 作者:
T. Nandakumar;Uma Dwivedi;Palmurukan M. Ramar;K. K. Pant;Sanat Kumar;Ekambaram Balaraman - 通讯作者:
Ekambaram Balaraman
Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices
商用聚砜 (PSf) 膜纯气体渗透性的多实验室研究:测量标准和最佳实践
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.5
- 作者:
Katherine Mizrahi Rodriguez;Wanjiang Wu;Taliehsadat Alebrahim;Yiming Cao;B. Freeman;Daniel J. Harrigan;Mayank Jhalaria;A. Kratochvil;Sanat Kumar;Won Hee Lee;Y. Lee;Haiqing Lin;Julian M. Richardson;Qilei Song;Benjamin J Sundell;R. Thür;I. Vankelecom;Anqi Wang;Lina Wang;Catherine Wiscount;Z. Smith - 通讯作者:
Z. Smith
Sanat Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanat Kumar', 18)}}的其他基金
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
- 批准号:
2226898 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAS-MNP: Origins of Secondary Nanoplastics and Mitigating Their Creation
CAS-MNP:二次纳米塑料的起源以及减少其产生
- 批准号:
2301348 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Critical Factors Controlling Gas Separations by Polymeric Membranes
控制聚合物膜气体分离的关键因素
- 批准号:
1829655 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
The Role of Grafting Mechanism on the Self-Assembly and Properties of Polymer Nanocomposites
接枝机制对聚合物纳米复合材料自组装和性能的作用
- 批准号:
1709061 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Designing Optimal Nanoparticle Shapes and Ligand Parameters for Polymer-Grafted Nanoparticle Membranes
DMREF:合作研究:为聚合物接枝纳米颗粒膜设计最佳纳米颗粒形状和配体参数
- 批准号:
1629502 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Modeling Solute Diffusion in Polymeric Membranes for Gas Separations
模拟气体分离聚合物膜中的溶质扩散
- 批准号:
1507030 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Controlling Nanocomposite Properties by Nanoparticle Assembly
通过纳米颗粒组装控制纳米复合材料性能
- 批准号:
1408323 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: Exploiting Void Symmetries to Control the Self-Assembly of Nanoparticles
合作研究:利用空洞对称性来控制纳米颗粒的自组装
- 批准号:
1403049 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Tailoring Polymer Nanocomposite Properties by Nanoparticle Assembly
通过纳米颗粒组装定制聚合物纳米复合材料性能
- 批准号:
1106180 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
- 批准号:
2335533 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant