CAS-MNP: Origins of Secondary Nanoplastics and Mitigating Their Creation
CAS-MNP:二次纳米塑料的起源以及减少其产生
基本信息
- 批准号:2301348
- 负责人:
- 金额:$ 45.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYIt is well-established that plastics degrade into micro and nanoplastics. These environmental pollutants have been found at the ocean surface (e.g., the Atlantic garbage patch) and now in the deep(est) ocean. While it is commonly believed that these materials can have deleterious effects on marine life, there is little understanding of how they form, their ultimate fate and most importantly how their occurrence can be mitigated. This research focuses on exactly this topic, in particular on semicrystalline polymers, which constitute over 70% of all plastics used currently. The work will combine experimental and theoretical tools to elucidate their degradation mechanisms when exposed to mechanical forces, water, air and/or UV light. The research will thus bring the well-established tools of polymer characterization towards delineating the critical mechanisms underpinning the formation of nanoplastics. Going beyond these aspects, this work anticipates mechanisms to mitigate the creation of these environmental pollutants -- finding and optimizing them is the second prong of the project. From a broader impacts viewpoint, design problems inspired by this research will be showcased in interdisciplinary programs such as the Engineering Design curriculum. The project will also facilitate undergraduate research opportunities and the training of a diverse cohort of junior and senior students at Columbia University. Understanding the routes to achieving decreased nanoplastic creation, and communicating this knowledge to the outside world, are the ultimate foci of the proposed work, which is thus deeply rooted in contributing to global sustainability.TECHNICAL SUMMARYIt is now well-established that plastics degrade into micro and nanoplastics. These environmental pollutants have been found on the ocean surface and in the deep ocean. This research focuses in particular on semicrystalline polymers, which constitute over 70% of all plastics used currently. When these polymers environmentally degrade in the aqueous milieu (i.e., in oceans) experiments consistently show that the chain segments in the amorphous phase break first, while the crystalline population actually grows. This work proposes that semicrystalline polymers form nanoplastics (100 nm and smaller) due to the preferential fragmentation of amorphous-phase tie chains which originally provided the connectivity between adjacent crystalline lamellae. By analogy to the phenomenon of environmental stress cracking, breaking of these molecular connectors leads to local material failure and the formation of nanoplastics. The proposed work will combine experimental and theoretical tools to elucidate the proposed degradation mechanisms of semicrystalline polymers of varying chemistries when exposed to mechanical stresses, water, O2 and/or UV light. Experimentally, it shall correlate nanoparticle creation with the initial polymer chemistry and morphology. How these variables affect the size, structure and properties of the resulting environmental pollutants are open questions that this research shall critically address. Parallel theoretical studies will predict the temporal evolution of the connectivity between adjacent crystals, the mechanical properties of the degrading plastics, and hence the size and number of nanoplastic objects that are temporally generated from a bulk polymer. The work will thus bring the well-established tools of polymer characterization towards delineating the critical physics underpinning the formation of nanoplastics. Going beyond these aspects, it is proposed that the use of copolymers or extruding the material can increase connectivity between crystals and thus serve as an efficient strategy to mitigate their creation. Design problems inspired by this research will be showcased in interdisciplinary programs such as the Engineering Design curriculum. The project will also facilitate undergraduate research opportunities and the training of a diverse cohort of junior and senior students at Columbia University. The PI will develop online learning modules related to the theme of this proposal for undergraduate and K-12 students. This PI has already run a three-day virtual workshop at Columbia University on the application of Machine Learning to materials science. Achieving the goal of decreasing nanoplastic creation is the ultimate focus of the proposed work, which is thus centrally focused on global sustainability..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结众所周知,塑料会降解成微米和纳米塑料。这些环境污染物已经在海洋表面发现(例如,大西洋垃圾带),现在在深海(东部)。虽然人们普遍认为,这些物质可能对海洋生物产生有害影响,但人们对它们如何形成、最终命运以及最重要的是如何减轻其发生的了解甚少。这项研究的重点正是这一主题,特别是半结晶聚合物,它占目前使用的所有塑料的70%以上。这项工作将结合联合收割机的实验和理论工具,以阐明其降解机制时,暴露于机械力,水,空气和/或紫外线。因此,这项研究将带来完善的聚合物表征工具,以描绘支撑纳米塑料形成的关键机制。超越这些方面,这项工作预计机制,以减轻这些环境污染物的创造-找到和优化它们是该项目的第二个方面。从更广泛的影响角度来看,本研究启发的设计问题将在工程设计课程等跨学科课程中展示。该项目还将促进本科生的研究机会,并在哥伦比亚大学培训一批不同的大三和大四学生。了解实现减少纳米塑料产生的途径,并将此知识传达给外界,是拟议工作的最终焦点,因此,这深深植根于为全球可持续发展做出贡献。技术总结现在已经确定,塑料降解为微米和纳米塑料。这些环境污染物存在于海洋表面和深海中。这项研究特别关注半结晶聚合物,它占目前使用的所有塑料的70%以上。当这些聚合物在水性环境中环境降解时(即,在海洋中)实验一致表明,非晶相中的链段首先断裂,而晶体群实际上在增长。这项工作提出,半结晶聚合物形成纳米塑料(100 nm及以下),由于优先破碎的非晶相连接链,最初提供相邻的结晶层之间的连接。通过类比环境应力开裂现象,这些分子连接器的断裂导致局部材料失效和纳米塑料的形成。拟议的工作将联合收割机实验和理论工具,以阐明不同的化学半结晶聚合物暴露于机械应力,水,O2和/或UV光时,提出的降解机制。在实验上,它将纳米粒子的产生与初始聚合物化学和形态相关联。这些变量如何影响所产生的环境污染物的大小,结构和性质是开放的问题,这项研究应严格解决。平行的理论研究将预测相邻晶体之间的连接性的时间演变,降解塑料的机械性能,以及从本体聚合物中暂时产生的纳米塑料物体的大小和数量。因此,这项工作将带来完善的聚合物表征工具,以描绘支撑纳米塑料形成的关键物理学。超越这些方面,提出使用共聚物或挤出材料可以增加晶体之间的连接性,从而作为减轻其产生的有效策略。受本研究启发的设计问题将在工程设计课程等跨学科课程中展示。该项目还将促进本科生的研究机会,并在哥伦比亚大学培训一批不同的大三和大四学生。PI将为本科生和K-12学生开发与本提案主题相关的在线学习模块。这个PI已经在哥伦比亚大学举办了一个为期三天的虚拟研讨会,主题是机器学习在材料科学中的应用。实现减少纳米塑料产生的目标是拟议工作的最终重点,因此重点关注全球可持续性。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanat Kumar其他文献
Feasibility of Hydrate-Based Carbon dioxide Sequestration in Arabian Sea Sediments
- DOI:
10.1016/j.cej.2024.155696 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Shweta Negi;Avinash V. Palodkar;Suhas Suresh Shetye;Sanat Kumar;Asheesh Kumar - 通讯作者:
Asheesh Kumar
Studies on Carbon Number Distribution of High Melting Microcrystalline Waxes
高熔点微晶蜡碳数分布的研究
- DOI:
10.1081/lft-120018171 - 发表时间:
2003 - 期刊:
- 影响因子:1.5
- 作者:
Sanat Kumar;A. Gupta;K. Agrawal - 通讯作者:
K. Agrawal
Clustering in binary mixtures of axial multipoles confined to a two-dimensional plane
- DOI:
10.1016/j.physa.2014.08.065 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Manjori Mukherjee;Sanat Kumar;Pankaj Mishra - 通讯作者:
Pankaj Mishra
Enhanced catalytic co-conversion of biomass and plastic volatiles using metal-enhanced HZSM-5 extrudates: a study on pyro-kinetic, synergistic, and thermodynamic efficacy
使用金属增强的 HZSM-5 挤出物增强生物质和塑料挥发物的催化共转化:热动力学、协同作用和热力学功效的研究
- DOI:
10.1007/s13399-025-06675-6 - 发表时间:
2025-03-04 - 期刊:
- 影响因子:4.100
- 作者:
T. Nandakumar;Uma Dwivedi;Palmurukan M. Ramar;K. K. Pant;Sanat Kumar;Ekambaram Balaraman - 通讯作者:
Ekambaram Balaraman
Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: Measurement standards and best practices
商用聚砜 (PSf) 膜纯气体渗透性的多实验室研究:测量标准和最佳实践
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:9.5
- 作者:
Katherine Mizrahi Rodriguez;Wanjiang Wu;Taliehsadat Alebrahim;Yiming Cao;B. Freeman;Daniel J. Harrigan;Mayank Jhalaria;A. Kratochvil;Sanat Kumar;Won Hee Lee;Y. Lee;Haiqing Lin;Julian M. Richardson;Qilei Song;Benjamin J Sundell;R. Thür;I. Vankelecom;Anqi Wang;Lina Wang;Catherine Wiscount;Z. Smith - 通讯作者:
Z. Smith
Sanat Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanat Kumar', 18)}}的其他基金
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
- 批准号:
2226898 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Data-Enabled Theoretical Understanding of the Structure and Properties of Solvent-cast Polymer Nanocomposites
基于数据的理论理解溶剂浇铸聚合物纳米复合材料的结构和性能
- 批准号:
2126660 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Critical Factors Controlling Gas Separations by Polymeric Membranes
控制聚合物膜气体分离的关键因素
- 批准号:
1829655 - 财政年份:2019
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
The Role of Grafting Mechanism on the Self-Assembly and Properties of Polymer Nanocomposites
接枝机制对聚合物纳米复合材料自组装和性能的作用
- 批准号:
1709061 - 财政年份:2017
- 资助金额:
$ 45.9万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Designing Optimal Nanoparticle Shapes and Ligand Parameters for Polymer-Grafted Nanoparticle Membranes
DMREF:合作研究:为聚合物接枝纳米颗粒膜设计最佳纳米颗粒形状和配体参数
- 批准号:
1629502 - 财政年份:2016
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Modeling Solute Diffusion in Polymeric Membranes for Gas Separations
模拟气体分离聚合物膜中的溶质扩散
- 批准号:
1507030 - 财政年份:2015
- 资助金额:
$ 45.9万 - 项目类别:
Continuing Grant
Controlling Nanocomposite Properties by Nanoparticle Assembly
通过纳米颗粒组装控制纳米复合材料性能
- 批准号:
1408323 - 财政年份:2014
- 资助金额:
$ 45.9万 - 项目类别:
Continuing Grant
Collaborative Research: Exploiting Void Symmetries to Control the Self-Assembly of Nanoparticles
合作研究:利用空洞对称性来控制纳米颗粒的自组装
- 批准号:
1403049 - 财政年份:2014
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Tailoring Polymer Nanocomposite Properties by Nanoparticle Assembly
通过纳米颗粒组装定制聚合物纳米复合材料性能
- 批准号:
1106180 - 财政年份:2011
- 资助金额:
$ 45.9万 - 项目类别:
Continuing Grant
相似国自然基金
MNP标记技术在血吸虫病早期诊断中的应用与效能评价
- 批准号:2025JJ70383
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
钠离子电池Na2MnP2O7正极材料多电子反应调控及可逆机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于二维材料黑磷的新型MNP&αIIbβ3受体双重介导的尿激酶递释平台联合光热疗法靶向溶栓研究
- 批准号:82060095
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
生物学可控的Her-MNP纳米平台的构建、评价及分子显像的研究
- 批准号:81671733
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
多功能载紫杉醇靶向磁性纳米粒UP-MNP-C11诊治动脉粥样硬化的实验研究
- 批准号:81270413
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
锰过氧化物酶/纳米二氧化硅(MnP/Nano-SiO2)体系催化降解碱木质素的研究
- 批准号:30901135
- 批准年份:2009
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS-MNP: Degradation of Plastics in the Environment: Decoupling the Roles of Polymer Type, Material Attributes, and Chemical Additives
CAS-MNP:环境中塑料的降解:解耦聚合物类型、材料属性和化学添加剂的作用
- 批准号:
2304991 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Continuing Grant
RUI: CAS-MNP: Molecular Behavior at Colloidal/Aqueous Interfaces of Heterogeneous Nano- and Micro-Plastics - Binding Interactions and Effect of Aging
RUI:CAS-MNP:异质纳米和微米塑料胶体/水界面的分子行为 - 结合相互作用和老化效应
- 批准号:
2304814 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
CAS-MNP: Understanding the Interactions Between Small Molecules and Plastic Nanoparticles for Environmental Remediation and Sensing Using Nuclear Magnetic Resonance
CAS-MNP:了解小分子和塑料纳米颗粒之间的相互作用,用于环境修复和核磁共振传感
- 批准号:
2304888 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Identifying the risks of micro- and nanoplastics (MnP) from agricultural mulching to groundwater
识别农业覆盖物中的微米和纳米塑料 (MnP) 对地下水的风险
- 批准号:
EP/X023958/1 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Fellowship
CAS-MNP: Evaluating Degradation Products and Changes in Colloidal Properties of Microplastics During Photochemical Weathering
CAS-MNP:评估光化学风化过程中微塑料的降解产物和胶体性质的变化
- 批准号:
2204145 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-MNP: Sea ice-ocean exchange of Arctic microplastics: linking small scales to the large-scale system
合作研究:CAS-MNP:北极微塑料的海冰-海洋交换:将小规模与大规模系统联系起来
- 批准号:
2138318 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
CAS-MNP: Assessing the Controls of Plastic Photochemical Reactivity in the Surface Ocean
CAS-MNP:评估表层海洋塑料光化学反应的控制
- 批准号:
2202621 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Collaborative Research: CAS-MNP: Sea ice-ocean exchange of Arctic microplastics: linking small scales to the large-scale system
合作研究:CAS-MNP:北极微塑料的海冰-海洋交换:将小规模与大规模系统联系起来
- 批准号:
2138317 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
Collaborative Research: CAS-MNP: Sea ice-ocean exchange of Arctic microplastics: linking small scales to the large-scale system
合作研究:CAS-MNP:北极微塑料的海冰-海洋交换:将小规模与大规模系统联系起来
- 批准号:
2138316 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant
CAS-MNP: Evaluating Patterns and Controls on Microplastic Accumulation in Floodplains
CAS-MNP:评估洪泛区微塑料积累的模式和控制
- 批准号:
2219334 - 财政年份:2022
- 资助金额:
$ 45.9万 - 项目类别:
Standard Grant