III: Small: From Spatial Language to Spatial Data - a simulation-based approach

III:小:从空间语言到空间数据 - 基于模拟的方法

基本信息

  • 批准号:
    2127901
  • 负责人:
  • 金额:
    $ 48.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

User experience related to spatial information is currently directly linked to the representation of the data; that is, geographic co-ordinates pinpoint locations on maps and routing algorithms determine the best route based on distance and time. In contrast, human interaction with the world is based on experience, learning and reasoning on qualitative factors, including spatial concepts, such as near/far, behind, next to, inside. Considering how spatial information is conveyed in natural language, there is no unique mapping between the spatial expressiveness and quantifiable spatial concepts. For the most part this is attributed to the highly contextualized nature of human language; that is, what human language is interpreted in part by who and where it was said and what other words surrounded the comment. The challenge in this project is on devising means to better understand people's perception of space by deciphering such spatial language terms. This will lead to novel text and audio-based interfaces for the consumption of geospatial data such as when asking for or giving directions in a way that is intuitive to people or for systems that more effectively assist the visually impaired.The technical aims of the project are divided into two thrusts. The first thrust develops a simulation to crowdsource geospatial language expression data by having users interact in a virtual environment. The spatial language expressions and interactions are captured using quantitative models. The second thrust then uses these user-generated descriptions to evaluate several modeling approaches that include (i) studying specific urban settings to identify contextual factors and (ii) exploring neural approaches to modeling the problem of grounding language to this spatial context. The resulting models can then be used to automatically translate language to geospatial information and, in the reverse direction, to train dialogue agents that can generate enriched, contextualized route and scene descriptions with natural, useful geospatial language expressions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,与空间信息相关的用户体验与数据的表示直接链接;也就是说,地理坐标在地图上查明位置,路由算法确定了基于距离和时间的最佳路线。相比之下,人类与世界的互动是基于经验,学习和推理定性因素,包括空间概念,例如近/远处,后面,旁边,内部。考虑到如何以自然语言传达空间信息,空间表现力和可量化的空间概念之间没有独特的映射。在大多数情况下,这归因于人类语言高度上下文化的本质。也就是说,人类语言的某种解释是由谁和何处以及其他词围绕评论的方式来解释的。该项目的挑战在于设计手段,以通过破译这种空间语言术语来更好地理解人们对空间的看法。这将导致用于消耗地理空间数据的新颖文本和基于音频的接口,例如以直观的方式或对人或更有效地帮助视力障碍的系统的方式进行指示。该项目的技术目的分为两个推力。第一个推力通过使用户在虚拟环境中进行交互来开发众包地理空间语言表达数据的模拟。空间语言表达式和相互作用是使用定量模型捕获的。然后,第二个推力使用这些用户生成的描述来评估几种建模方法,其中包括(i)研究特定的城市环境以识别上下文因素以及(ii)探索神经方法,以建模将语言的问题建模到这种空间上下文。 The resulting models can then be used to automatically translate language to geospatial information and, in the reverse direction, to train dialogue agents that can generate enriched, contextualized route and scene descriptions with natural, useful geospatial language expressions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trustworthiness of Children Stories Generated by Large Language Models
大语言模型生成的儿童故事的可信度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dieter Pfoser其他文献

Dieter Pfoser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dieter Pfoser', 18)}}的其他基金

AitF: Collaborative Research: Modeling movement on transportation networks using uncertain data
AitF:协作研究:使用不确定数据对交通网络上的运动进行建模
  • 批准号:
    1637541
  • 财政年份:
    2016
  • 资助金额:
    $ 48.91万
  • 项目类别:
    Standard Grant

相似国自然基金

空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
  • 批准号:
    32300220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄土高原小流域植被修复的产汇流影响敏感区域与空间优化配置研究
  • 批准号:
    42271038
  • 批准年份:
    2022
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
“城-镇”体系视角下的特色小(城)镇研究:空间格局、网络与政策导向
  • 批准号:
    72174071
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
小尺度电磁结构在空间等离子体中的平衡与演化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
小尺度磁洞在近地空间的起源研究
  • 批准号:
    42104153
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

III : Small : Integrating and Learning on Spatial Data via Multi-Agent Simulation
III:小:通过多智能体模拟集成和学习空间数据
  • 批准号:
    2311954
  • 财政年份:
    2023
  • 资助金额:
    $ 48.91万
  • 项目类别:
    Standard Grant
III: Small: Spatial Deep Learning from Imperfect Volunteered Geographic Information
III:小:从不完美的自愿地理信息中进行空间深度学习
  • 批准号:
    2207072
  • 财政年份:
    2021
  • 资助金额:
    $ 48.91万
  • 项目类别:
    Standard Grant
III: Small: Spatial Deep Learning from Imperfect Volunteered Geographic Information
III:小:从不完美的自愿地理信息中进行空间深度学习
  • 批准号:
    2008973
  • 财政年份:
    2020
  • 资助金额:
    $ 48.91万
  • 项目类别:
    Standard Grant
III: Small: Adopting Machine Learning Techniques for Big Spatial and Spatio-temporal Data and Applications
III:小:采用机器学习技术处理大时空数据和应用
  • 批准号:
    1907855
  • 财政年份:
    2019
  • 资助金额:
    $ 48.91万
  • 项目类别:
    Standard Grant
III: Small: Indoor Spatial Query Evaluation and Trajectory Tracking with Bayesian Filtering Techniques
III:小:使用贝叶斯过滤技术的室内空间查询评估和轨迹跟踪
  • 批准号:
    1618669
  • 财政年份:
    2016
  • 资助金额:
    $ 48.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了