Collaborative Research: Inferring The In Situ Micro-Mechanics of Embedded Fiber Networks by Leveraging Limited Imaging Data
合作研究:利用有限的成像数据推断嵌入式光纤网络的原位微观力学
基本信息
- 批准号:2127925
- 负责人:
- 金额:$ 28.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will focus on gaining a fundamental understanding of embedded fiber networks and creating the tools necessary to characterize their behavior from limited available measurements. Embedded fiber networks are ubiquitous in nature, from the extracellular matrix surrounding biological cells, to branching blood vessels embedded in organs, to moth’s cocoons. Understanding these systems is important because these systems are the fundamental mechanical building blocks of many types of natural and engineered biological tissue, and bio-inspired advanced materials. It is important not only to understand these systems, but also to be able to measure their mechanical behavior in a non-destructive manner so that advances in understanding can be applied in the real world. This research project will synthesize experiments, theory-based computational models, and data-driven computational models to elucidate the fundamental relationship between embedding matrix properties, fiber properties, and fiber network properties for soft embedded fiber networks undergoing large deformation. In addition, this research project will develop computational capabilities for the analysis of these systems where severely limited image-based data is used to predict both structural properties and characterize mechanical behavior. The research will be complemented by disseminating relevant data and code under open source licenses, and releasing online modules focused on applying machine learning to mechanics research. The research will also be complemented by establishing educational outreach programs at the middle school and high school levels that focus on bringing STEM education to underserved populations. The specific goal of this research is to define fundamental structure-function relationships in soft embedded fiber networks undergoing large deformation and create the tools needed to analyze these systems given limited available imaging data. Critically, it is necessary to develop tools to evaluate these systems non-destructively because one of their most important applications is in living systems. Thus, the research objectives of this project include: (i) curating an experimental dataset and implementing and validating a computational model of three-dimensional embedded fiber networks undergoing large deformation; (ii) understanding and delineating the different mechanical regimes of embedded fiber networks undergoing large deformation; (iii) establishing and testing a machine learning framework to rapidly and non-destructively analyze embedded fiber networks from imperfectly-paired images taken on the discrete fiber scale. The project will allow the PIs to advance the knowledge base at the interface of applied mechanics, computational mechanics, and machine learning, and establish their long-term careers in the mechanics of materials and structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该基金将专注于获得对嵌入式光纤网络的基本了解,并创建必要的工具,以通过有限的可用测量来表征其行为。嵌入式纤维网络在自然界中无处不在,从生物细胞周围的细胞外基质,到嵌入器官中的分支血管,再到蛾的茧。了解这些系统很重要,因为这些系统是许多类型的天然和工程生物组织以及生物启发的先进材料的基本机械构建块。重要的是不仅要理解这些系统,而且要能够以非破坏性的方式测量它们的机械行为,以便将理解的进步应用于真实的世界。本研究项目将综合实验,基于理论的计算模型和数据驱动的计算模型,以阐明嵌入基质性质,纤维性质和纤维网络性质之间的基本关系,为软嵌入纤维网络进行大变形。此外,该研究项目将开发用于分析这些系统的计算能力,其中使用非常有限的基于图像的数据来预测结构特性和表征机械行为。这项研究将通过在开源许可证下传播相关数据和代码来补充,并发布专注于将机器学习应用于力学研究的在线模块。该研究还将通过在初中和高中建立教育推广计划来补充,重点是将STEM教育带给服务不足的人群。 本研究的具体目标是定义软嵌入式纤维网络中发生大变形的基本结构-功能关系,并在有限的可用成像数据下创建分析这些系统所需的工具。至关重要的是,有必要开发非破坏性评估这些系统的工具,因为它们最重要的应用之一是在生命系统中。因此,本项目的研究目标包括:(i)整理实验数据集,并实施和验证经历大变形的三维嵌入式纤维网络的计算模型;(ii)理解和描绘经历大变形的嵌入式纤维网络的不同力学状态;(iii)建立和测试机器学习框架,以从在离散纤维尺度上拍摄的成对图像中快速且非破坏性地分析嵌入的纤维网络。该项目将使PI在应用力学、计算力学和机器学习的界面上推进知识基础,并在材料和结构力学方面建立长期的职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teaching Material Testing and Characterization with an Open, Accessible, and Affordable Mechanical Test Device
使用开放、易于访问且经济实惠的机械测试设备进行教学材料测试和表征
- DOI:10.1007/s43683-021-00056-x
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sugerman, Gabriella P.;Rausch, Manuel K.
- 通讯作者:Rausch, Manuel K.
Can machine learning accelerate soft material parameter identification from complex mechanical test data?
- DOI:10.1007/s10237-022-01631-z
- 发表时间:2022-10-13
- 期刊:
- 影响因子:3.5
- 作者:Kakaletsis, Sotirios;Lejeune, Emma;Rausch, Manuel K.
- 通讯作者:Rausch, Manuel K.
Elasticity of whole blood clots measured via Volume Controlled Cavity Expansion
通过体积控制腔扩张测量全血凝块的弹性
- DOI:10.1016/j.jmbbm.2023.105901
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Varner, Hannah;Sugerman, Gabriella P.;Rausch, Manuel K.;Cohen, Tal
- 通讯作者:Cohen, Tal
Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue
- DOI:10.1007/s00366-022-01733-3
- 发表时间:2021-07
- 期刊:
- 影响因子:8.7
- 作者:Vahidullah Tac;V. Sree;M. Rausch;A. B. Tepole
- 通讯作者:Vahidullah Tac;V. Sree;M. Rausch;A. B. Tepole
An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations
- DOI:10.1098/rsta.2021.0365
- 发表时间:2022-10-17
- 期刊:
- 影响因子:5
- 作者:Lohr, Matthew J.;Sugerman, Gabriella P.;Rausch, Manuel K.
- 通讯作者:Rausch, Manuel K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Rausch其他文献
Polyconvex physics-augmented neural network constitutive models in principal stretches
主伸长率中的多凸物理增强神经网络本构模型
- DOI:
10.1016/j.ijsolstr.2025.113469 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:3.800
- 作者:
Adrian Buganza Tepole;Asghar Arshad Jadoon;Manuel Rausch;Jan Niklas Fuhg - 通讯作者:
Jan Niklas Fuhg
Blood Clots Are Mechanically Weak in Patients with Sickle Cell Disease
- DOI:
10.1182/blood-2023-186716 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Grace Bechtel;Gabriella Sugerman;Alicia Chang;Manuel Rausch;Adam Bush - 通讯作者:
Adam Bush
The folded X-pattern is not necessarily a statistical signature of decision confidence
折叠的 X 模式不一定是决策置信度的统计签名
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Manuel Rausch;Michael Zehetleitner - 通讯作者:
Michael Zehetleitner
Content, granularity, and type 2 sensitivity of subjective measures of visual consciousness
视觉意识主观测量的内容、粒度和 2 类敏感性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Manuel Rausch - 通讯作者:
Manuel Rausch
A comparison between a visual analogue scale and a four point scale as measures of conscious experience of motion
视觉模拟量表和四点量表作为运动意识体验测量的比较
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.4
- 作者:
Manuel Rausch;Michael Zehetleitner - 通讯作者:
Michael Zehetleitner
Manuel Rausch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Rausch', 18)}}的其他基金
Understanding Mechano-Fibrinolysis: Fiber-Scale Multiphysics Experiments and Models
了解机械纤维蛋白溶解:纤维尺度多物理场实验和模型
- 批准号:
2105175 - 财政年份:2021
- 资助金额:
$ 28.57万 - 项目类别:
Continuing Grant
CAREER: Toward a Fundamental Understanding of Why Thrombus Dissolves, Persists, or Breaks Off
职业生涯:对血栓为何溶解、持续或破裂有一个基本的了解
- 批准号:
2046148 - 财政年份:2021
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: An in vivo/in silico Approach to Delineate the Effect of Age on Pressure Ulcer Susceptibility
合作研究:描述年龄对压疮易感性影响的体内/计算机方法
- 批准号:
1916663 - 财政年份:2019
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219772 - 财政年份:2022
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219773 - 财政年份:2022
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: Inferring The In Situ Micro-Mechanics of Embedded Fiber Networks by Leveraging Limited Imaging Data
合作研究:利用有限的成像数据推断嵌入式光纤网络的原位微观力学
- 批准号:
2127864 - 财政年份:2022
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: Inferring the impacts of closely-related species on phenotypic evolution
合作研究:推断密切相关物种对表型进化的影响
- 批准号:
2154898 - 财政年份:2022
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
- 批准号:
2219771 - 财政年份:2022
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: Inferring the impacts of closely-related species on phenotypic evolution
合作研究:推断密切相关物种对表型进化的影响
- 批准号:
2154897 - 财政年份:2022
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: Inferring Cellular Lysis and Regeneration of Organic Matter by Marine Viruses
合作研究:推断海洋病毒对有机物的细胞裂解和再生
- 批准号:
1829641 - 财政年份:2018
- 资助金额:
$ 28.57万 - 项目类别:
Continuing Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
- 批准号:
1917337 - 财政年份:2018
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: An Expanded Framework for Inferring Public Policy Diffusion Networks
合作研究:推断公共政策扩散网络的扩展框架
- 批准号:
1839282 - 财政年份:2018
- 资助金额:
$ 28.57万 - 项目类别:
Standard Grant
Collaborative Research: Inferring Dynamic Topology to Decode and Control Spatiotemporal Structures in Complex Networks
合作研究:推断动态拓扑以解码和控制复杂网络中的时空结构
- 批准号:
9974539 - 财政年份:2018
- 资助金额:
$ 28.57万 - 项目类别: