I-Corps: Radiative cooling technology for commercial applications of irrigation water recycling
I-Corps:用于灌溉水回收商业应用的辐射冷却技术
基本信息
- 批准号:2128431
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a super-efficient greenhouse system providing passive water purification and accelerated water condensation technologies by recycling water from transpiration. Irrigation for agriculture is the largest consumer of fresh water representing approximately 87% of global fresh water consumption. In particular, greenhouses lose roughly 90% of input water as vapor escaping through ventilation systems. In theory, all lost water could be recycled to realize great savings. However, recycling evaporated water is difficult in practice because it requires the use of a passive technology to recycle ambient-temperature vapor, particularly during the daytime. New technologies are required to achieve moisture condensation for water harvesting during daytime operation due to elevated temperatures from solar heating. The proposed technology solution may enable water recovery under such conditions with reduced energy requirements. Such a technology may support a more sustainable supply of food by allowing for food production in regions where water is a non-renewable, scare resource. Enhancement in agricultural water use efficiency is a promising technology in order to enable urban consumption of water, with potential far-reaching impact in arid areas.This I-Corps project is based on the development of a greenhouse system to recycle irrigation water using sub-ambient cooling and water harvesting technologies. The key water recycling mechanism is through radiative dew condensation, which is a passive technique that does not consume electricity or fuel. Today’s known radiative dew condensation techniques are low in efficiency. They are only effective during a few hours in the night and the water collected quickly evaporates when the sun rises. Using the proposed electricity-free radiative cooling technology, the aim is to substantially boost the efficiency of dew condensation by permitting operation during daytime. This may provide an inexpensive and sustainable solution for providing fresh water more efficiently and effectively by recycling formerly lost transpired water vapor in greenhouses. In addition, the technology may allow the development of a super-efficient greenhouse system using passive water purification using radiative cooling-accelerated water condensation technologies to recycle water from transpiration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛影响/商业潜力是开发一个超高效温室系统,通过回收蒸腾作用产生的水,提供被动水净化和加速水冷凝技术。农业灌溉是最大的淡水消费者,占全球淡水消费量的87%。特别是,温室损失了大约90%的输入水作为蒸汽通过通风系统逸出。从理论上讲,所有流失的水都可以回收利用,从而实现巨大的节约。然而,回收蒸发的水在实践中是困难的,因为它需要使用被动技术来回收环境温度的蒸汽,特别是在白天。由于太阳能加热温度升高,需要新的技术来实现水分冷凝,以便在白天操作期间进行水收集。所提出的技术解决方案可以在这种条件下实现水回收,同时降低能源需求。这种技术可以通过允许在水是不可再生的稀缺资源的地区进行粮食生产来支持更可持续的粮食供应。提高农业用水效率是一项很有前途的技术,可以促进城市用水,对干旱地区可能产生深远影响。I-Corps项目的基础是开发一个温室系统,利用低温冷却和集水技术回收灌溉水。关键的水循环机制是通过辐射结露,这是一种不消耗电力或燃料的被动技术。目前已知的辐射结露技术效率低。 它们只在夜间的几个小时内有效,当太阳升起时,收集的水会迅速蒸发。使用拟议的无电辐射冷却技术,其目的是通过允许在白天运行来大幅提高结露效率。这可以提供一种廉价且可持续的解决方案,用于通过再循环温室中先前损失的蒸发水蒸气来更高效且有效地提供淡水。此外,该技术还可以开发一种超高效的温室系统,该系统使用辐射冷却加速水冷凝技术进行被动水净化,从蒸腾作用中回收水。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiaoqiang Gan其他文献
Dispersion topological darkness
色散拓扑暗
- DOI:
10.1364/cleo_qels.2017.fm2g.7 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Haomin Song;N. Zhang;J. Duan;Zhejun Liu;Jun Gao;Matthew H. Singer;Dengxin Ji;A. Cheney;Xie Zeng;Borui Chen;Suhua Jiang;Qiaoqiang Gan - 通讯作者:
Qiaoqiang Gan
Circular Nanoplasmonic Interferometer for Detection of Immune-Cell Secretion
用于检测免疫细胞分泌的圆形纳米等离子体干涉仪
- DOI:
10.1109/ipcon.2018.8527115 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yifeng Qian;Xie Zeng;Yongkang Gao;Hang Li;Sushil Kumar;Qiaoqiang Gan;Xuanhong Cheng;F. Bartoli - 通讯作者:
F. Bartoli
Band alignment of grafted monocrystalline Si (0 0 1)/β-Ga2O3 (0 1 0) p-n heterojunction determined by X-ray photoelectron spectroscopy
X 射线光电子能谱测定接枝单晶 Si (0 0 1)/β-Ga2O3 (0 1 0) p-n 异质结的能带排列
- DOI:
10.1016/j.apsusc.2024.159615 - 发表时间:
2023 - 期刊:
- 影响因子:6.7
- 作者:
Jiarui Gong;Jie Zhou;Ashok Dheenan;Moheb Sheikhi;F. Alema;T. Ng;S. Pasayat;Qiaoqiang Gan;A. Osinsky;Vincent Gambin;Chirag Gupta;Siddharth Rajan;Boon S. Ooi;Zhenqiang Ma - 通讯作者:
Zhenqiang Ma
Reflective micro-concentrator arrays from holographic photopolymerization: Design, fabrication and characterization
全息光聚合反射微聚光器阵列:设计、制造和表征
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Huina Xu;Ke Liu;Hai;M. Detty;Qiaoqiang Gan;A. Cartwright - 通讯作者:
A. Cartwright
Black TiO2 on Nanoporous Substrates for Improved Solar Vapor Generation
纳米多孔基材上的黑色二氧化钛可改善太阳能蒸汽的产生
- DOI:
10.1364/cleo_at.2020.af3n.6 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Youhai Liu;Haomin Song;Matthew H. Singer;Lyu Zhou;N. Zhang;Zongmin Bei;Qiaoqiang Gan - 通讯作者:
Qiaoqiang Gan
Qiaoqiang Gan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiaoqiang Gan', 18)}}的其他基金
EAGER: Collaborative Research: Cold vapor generation beyond the input solar energy limit and its condensation using thermal radiation
EAGER:合作研究:超出输入太阳能限制的冷蒸汽生成及其利用热辐射的冷凝
- 批准号:
1932968 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Super resolution imager sensing system using structured illuminated plasmonic spatial interferometers
使用结构化照明等离子体空间干涉仪的超分辨率成像传感系统
- 批准号:
1807463 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: Vertical-carrier-transport two-dimensional photo-harvesting devices with nanocavity enhancement
EAGER:具有纳米腔增强功能的垂直载流子传输二维光捕获装置
- 批准号:
1745621 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Atomic Layer Deposition for Large-Area Sub-10 Nanometer Patterning for Super Absorbing Optical Devices
用于超吸收光学器件的大面积亚 10 纳米图案化的原子层沉积
- 批准号:
1562057 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: Absorption engineering of optical and thermal hyperbolic metafilm patterns
EAGER:光学和热双曲超薄膜图案的吸收工程
- 批准号:
1425648 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: The Hybrid Integration of Plasmonic Interferometer Sensors and Active Optoelectronic Devices on a Single Microfluidic Chip
合作研究:等离激元干涉仪传感器和有源光电器件在单个微流控芯片上的混合集成
- 批准号:
1128086 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
CoolGlass: Mass producible and durable radiative cooling glass panels
CoolGlass:可大规模生产且耐用的辐射冷却玻璃面板
- 批准号:
EP/Y036603/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Adaptive daytime radiative cooling and heating for buildings
建筑物的自适应白天辐射制冷和供暖
- 批准号:
DP230103050 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
A Versatile Collector (VersCo) for simultaneous Photovoltaic-thermal and Radiative Cooling in Buildings
多功能集热器 (VersCo),用于建筑物中同时进行光伏热和辐射冷却
- 批准号:
EP/Y016645/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Fellowship
Fluorescent daytime radiative cooling for urban heat mitigation
用于缓解城市热量的荧光日间辐射冷却
- 批准号:
DP220100318 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
Polysiloxane Radiative Cooling Paints for the Decarbonisation of Cooling in the Built and Transport Environments (PolyCool)
用于建筑和运输环境冷却脱碳的聚硅氧烷辐射冷却涂料 (PolyCool)
- 批准号:
EP/X024482/1 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Global Development of Toroidal Plasma Peripheral Radiative Cooling Method Using Magnetic Field Topology and Generalization of its Stabilization Mechanism
利用磁场拓扑的环形等离子体外围辐射冷却方法的全球发展及其稳定机制的推广
- 批准号:
22KK0039 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Radiative Cooling and Homogeneous Droplet Freezing in Laboratory Clouds
实验室云中的辐射冷却和均匀液滴冻结
- 批准号:
2152233 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Radiative cooling instabilities in magnetized high-density plasmas.
磁化高密度等离子体中的辐射冷却不稳定性。
- 批准号:
2759315 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Studentship
Coupling Calculation for Radiative and Convective Heat Transfer and Development of Mist Cooling Technology to Prevent Heat Stroke
辐射与对流传热耦合计算及防中暑喷雾冷却技术开发
- 批准号:
21K14087 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Production of Radiative Cooling Paint for Thermal Management
用于热管理的辐射冷却涂料的规模化生产
- 批准号:
2005747 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant