Super resolution imager sensing system using structured illuminated plasmonic spatial interferometers
使用结构化照明等离子体空间干涉仪的超分辨率成像传感系统
基本信息
- 批准号:1807463
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Portable biomedical devices hold significant promises for various applications that have the potential to impact the fight against several global health problems. It was estimated that approximately two-thirds of global cell-phones are being used in the developing world (e.g. Africa, Asia). Therefore, sensitive biomedical devices integrated with smart-phones would yield a promising sensing system and introduce great impact on point-of-care diagnostics in developing countries and resource-limited areas. This proposal aims to develop a monochromatic structured illuminated plasmonic spatial interferometer suitable for highly sensitive sensing on digital cameras (e.g. on desktop microscopes and smart phones). The enhanced sensing performance is enabled by the super resolution strategy of structured illumination integrated with the plasmonic nanostructure developed in this project, which overcomes the resolution limit of the digital cameras. When successfully developed, such highly sensitive interferometers will allow a variety of biosensing applications at a much lower cost, with great societal impact on real time and in situ monitoring of global environmental (e.g. water) quality, liquid-food borne illnesses and personal health conditions. This research will be closely integrated with educational programs in the departments of Electrical Engineering and Biomedial Engineering at University at Buffalo. It will significantly impact the Electrical Engineering and Biomedial Engineering curriculum with its emphasis on experiential learning, and will provide an excellent educational opportunity for graduate and undergraduate student training of the next generation of researchers, educators and global leaders. The two PIs will provide excellent opportunities for undergraduate and graduate training in theoretical modeling, nanofabrication, miniaturized system design and optical super resolution image processing. The main goals of this educational and outreach program are to enhance the educational communication and collaboration, improve the participation of graduate and undergraduate students in cutting-edge researches, for outreach to K-12 students by organizing engineering summer campus, and provide opportunities for under-represented groups. While Surface Plasmon Resonance systems are currently used for label-free sensing, they remain inadequate for use in portable systems as the commercial instrumentation is expensive, complex, bulky and inconvenient for the integration with microfluidic platforms. Therefore, there is an urgent need to develop low-cost, compact, and high performance sensor systems for the ever-increasing sensing applications. Nanoplasmonic sensors are attractive miniaturized platforms to potentially meet these requirements. However, because nanoplasmonic sensors are mostly based on broadband wavelength shift interrogation which requires expensive spectrometers, high throughput sensing is still very challenging. This proposal will develop a plasmonic spatial interferometer structure to transfer the broadband wavelength peak/valley shift to the spatial interference pattern shift at a monochromatic wavelength such that the shift can be directly imaged by digital cameras on microscopes and smart-phones without the need of expensive spectrometers. To further enhance the sensing performance of the proposed system, the super resolution structured illumination strategy will be integrated into the sensor design by introducing a nanopatterned reference slit to generate Moire fringes with low spatial frequency information. This strategy enables a resolution much higher than the resolution limits of the optical imager system, thus allowing ultra-small spatial shift (sub-resolution-limit) to be observable even with portable cameras. The proposed system does not require spectrometer or angular tunable prism coupling system, leading to a significant reduction in device cost and instrumental complexity, especially when realized on smart-phone-based microscope systems. The potential of this sensing system will be demonstrated through the super-resolution-resolved peak/valley shift of 50 nm using inexpensive digital imagers, corresponding to an ultra-small sensing resolution approaching the performance of commercial bulky surface plasmon resonance imager systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
便携式生物医学设备在各种应用中具有重要的前景,这些应用有可能影响与几个全球健康问题的斗争。据估计,全球大约三分之二的手机是在发展中世界(例如非洲、亚洲)使用的。因此,与智能手机集成的敏感生物医学设备将产生有前途的传感系统,并对发展中国家和资源有限地区的即时诊断产生重大影响。该提案旨在开发单色结构化照明等离子体空间干涉仪,其适用于数码相机(例如,台式显微镜和智能手机)上的高灵敏度感测。增强的传感性能是通过与在这个项目中开发的等离子纳米结构集成的结构化照明的超分辨率策略来实现的,其克服了数码相机的分辨率限制。当成功开发时,这种高灵敏度干涉仪将允许以低得多的成本进行各种生物感测应用,对全球环境(例如水)质量、液体食物传播的疾病和个人健康状况的真实的实时和原位监测具有巨大的社会影响。这项研究将与布法罗大学电气工程和生物医学工程系的教育计划紧密结合。它将对电气工程和生物医学工程课程产生重大影响,重点是体验式学习,并将为下一代研究人员,教育工作者和全球领导者的研究生和本科生培训提供绝佳的教育机会。这两个PI将为理论建模、纳米制造、微型系统设计和光学超分辨率图像处理方面的本科生和研究生培训提供绝佳的机会。这个教育和推广计划的主要目标是加强教育沟通和合作,提高研究生和本科生在前沿研究的参与,通过组织工程暑期校园推广到K-12学生,并为代表性不足的群体提供机会。虽然表面等离子体共振系统目前用于无标记感测,但它们仍然不足以用于便携式系统,因为商业仪器昂贵、复杂、笨重并且不便于与微流体平台集成。因此,迫切需要开发低成本,紧凑,高性能的传感器系统,以满足日益增长的传感应用。纳米等离子体传感器是潜在地满足这些要求的有吸引力的小型化平台。然而,由于纳米等离子体传感器主要基于宽带波长偏移询问,这需要昂贵的光谱仪,因此高通量感测仍然非常具有挑战性。该提案将开发等离子体空间干涉仪结构,以将宽带波长峰/谷偏移转换为单色波长处的空间干涉图案偏移,使得该偏移可以通过显微镜和智能手机上的数码相机直接成像,而不需要昂贵的光谱仪。为了进一步提高所提出的系统的传感性能,超分辨率结构化照明策略将被集成到传感器设计中,通过引入纳米图案化参考狭缝来产生具有低空间频率信息的莫尔条纹。该策略使得分辨率比光学成像仪系统的分辨率极限高得多,从而允许即使用便携式相机也可观察到超小的空间偏移(亚分辨率极限)。所提出的系统不需要光谱仪或角度可调棱镜耦合系统,从而显著降低设备成本和仪器复杂性,特别是在基于智能手机的显微镜系统上实现时。这种传感系统的潜力将通过使用廉价的数字成像仪实现50 nm的超分辨率分辨峰/谷位移来证明,对应于一个超该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查进行评估来支持的搜索.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large‐Scale Sub‐1‐nm Random Gaps Approaching the Quantum Upper Limit for Quantitative Chemical Sensing
- DOI:10.1002/adom.202001634
- 发表时间:2020-10
- 期刊:
- 影响因子:9
- 作者:Nan Zhang;Hai-feng Hu;Matthew H. Singer;Kuang-Hui Li;Lyu Zhou;B. Ooi;Qiaoqiang Gan
- 通讯作者:Nan Zhang;Hai-feng Hu;Matthew H. Singer;Kuang-Hui Li;Lyu Zhou;B. Ooi;Qiaoqiang Gan
Plasmonic Interferometer Array Biochip as a New Mobile Medical Device for Cancer Detection.
等离子体干涉仪阵列生物芯片作为一种用于癌症检测的新型移动医疗设备。
- DOI:10.1109/jstqe.2018.2865418
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Zeng,Xie;Yang,Yunchen;Zhang,Nan;Ji,Dengxin;Gu,Xiaodong;Jornet,Josep;Wu,Yun;Gan,Qiaoqiang
- 通讯作者:Gan,Qiaoqiang
Intensity-modulated nanoplasmonic interferometric sensor for MMP-9 detection.
- DOI:10.1039/c8lc01391h
- 发表时间:2019-03
- 期刊:
- 影响因子:6.1
- 作者:Yifeng Qian;Xie Zeng;Yongkang Gao;Hang Li;Sushil Kumar;Qiaoqiang Gan;Xuanhong Cheng;F. Bartoli
- 通讯作者:Yifeng Qian;Xie Zeng;Yongkang Gao;Hang Li;Sushil Kumar;Qiaoqiang Gan;Xuanhong Cheng;F. Bartoli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiaoqiang Gan其他文献
Dispersion topological darkness
色散拓扑暗
- DOI:
10.1364/cleo_qels.2017.fm2g.7 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Haomin Song;N. Zhang;J. Duan;Zhejun Liu;Jun Gao;Matthew H. Singer;Dengxin Ji;A. Cheney;Xie Zeng;Borui Chen;Suhua Jiang;Qiaoqiang Gan - 通讯作者:
Qiaoqiang Gan
Circular Nanoplasmonic Interferometer for Detection of Immune-Cell Secretion
用于检测免疫细胞分泌的圆形纳米等离子体干涉仪
- DOI:
10.1109/ipcon.2018.8527115 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yifeng Qian;Xie Zeng;Yongkang Gao;Hang Li;Sushil Kumar;Qiaoqiang Gan;Xuanhong Cheng;F. Bartoli - 通讯作者:
F. Bartoli
Band alignment of grafted monocrystalline Si (0 0 1)/β-Ga2O3 (0 1 0) p-n heterojunction determined by X-ray photoelectron spectroscopy
X 射线光电子能谱测定接枝单晶 Si (0 0 1)/β-Ga2O3 (0 1 0) p-n 异质结的能带排列
- DOI:
10.1016/j.apsusc.2024.159615 - 发表时间:
2023 - 期刊:
- 影响因子:6.7
- 作者:
Jiarui Gong;Jie Zhou;Ashok Dheenan;Moheb Sheikhi;F. Alema;T. Ng;S. Pasayat;Qiaoqiang Gan;A. Osinsky;Vincent Gambin;Chirag Gupta;Siddharth Rajan;Boon S. Ooi;Zhenqiang Ma - 通讯作者:
Zhenqiang Ma
Reflective micro-concentrator arrays from holographic photopolymerization: Design, fabrication and characterization
全息光聚合反射微聚光器阵列:设计、制造和表征
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Huina Xu;Ke Liu;Hai;M. Detty;Qiaoqiang Gan;A. Cartwright - 通讯作者:
A. Cartwright
Black TiO2 on Nanoporous Substrates for Improved Solar Vapor Generation
纳米多孔基材上的黑色二氧化钛可改善太阳能蒸汽的产生
- DOI:
10.1364/cleo_at.2020.af3n.6 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Youhai Liu;Haomin Song;Matthew H. Singer;Lyu Zhou;N. Zhang;Zongmin Bei;Qiaoqiang Gan - 通讯作者:
Qiaoqiang Gan
Qiaoqiang Gan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiaoqiang Gan', 18)}}的其他基金
I-Corps: Radiative cooling technology for commercial applications of irrigation water recycling
I-Corps:用于灌溉水回收商业应用的辐射冷却技术
- 批准号:
2128431 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Cold vapor generation beyond the input solar energy limit and its condensation using thermal radiation
EAGER:合作研究:超出输入太阳能限制的冷蒸汽生成及其利用热辐射的冷凝
- 批准号:
1932968 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER: Vertical-carrier-transport two-dimensional photo-harvesting devices with nanocavity enhancement
EAGER:具有纳米腔增强功能的垂直载流子传输二维光捕获装置
- 批准号:
1745621 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Atomic Layer Deposition for Large-Area Sub-10 Nanometer Patterning for Super Absorbing Optical Devices
用于超吸收光学器件的大面积亚 10 纳米图案化的原子层沉积
- 批准号:
1562057 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
EAGER: Absorption engineering of optical and thermal hyperbolic metafilm patterns
EAGER:光学和热双曲超薄膜图案的吸收工程
- 批准号:
1425648 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: The Hybrid Integration of Plasmonic Interferometer Sensors and Active Optoelectronic Devices on a Single Microfluidic Chip
合作研究:等离激元干涉仪传感器和有源光电器件在单个微流控芯片上的混合集成
- 批准号:
1128086 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
- 批准号:92054301
- 批准年份:2020
- 资助金额:900.0 万元
- 项目类别:重大研究计划
基于Resolution算法的交互时态逻辑自动验证机
- 批准号:61303018
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
高计数率环境下MRPC特性研究
- 批准号:10875120
- 批准年份:2008
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Bright and switchable fluorophores for highly multiplexed super-resolution microscopy towards molecular interaction imaging
明亮且可切换的荧光团,用于分子相互作用成像的高度多重超分辨率显微镜
- 批准号:
10195413 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Bright and switchable fluorophores for highly multiplexed super-resolution microscopy towards molecular interaction imaging
明亮且可切换的荧光团,用于分子相互作用成像的高度多重超分辨率显微镜
- 批准号:
10439600 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Super-multiplexed fluorescence nanoscopy for imaging-based proteomics
用于基于成像的蛋白质组学的超级多重荧光纳米镜
- 批准号:
10471273 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Super-multiplexed fluorescence nanoscopy for imaging-based proteomics
用于基于成像的蛋白质组学的超级多重荧光纳米镜
- 批准号:
10028050 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Super-multiplexed fluorescence nanoscopy for imaging-based proteomics
用于基于成像的蛋白质组学的超级多重荧光纳米镜
- 批准号:
10388887 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Super-multiplexed fluorescence nanoscopy for imaging-based proteomics
用于基于成像的蛋白质组学的超级多重荧光纳米镜
- 批准号:
10261562 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10467027 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10299205 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10684709 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:














{{item.name}}会员




