III: Small: NeuroDB: A Neural Network Framework for Efficiently Answering Database Queries Approximately
III:小:NeuroDB:一种高效回答数据库查询的神经网络框架
基本信息
- 批准号:2128661
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are witnessing the age of data explosion. Large amounts of data are continuously generated by people, sensors and computers and then stored in computer systems. Many modern applications require these systems answer questions about the data quickly, accurately and with low storage costs. This is a challenging task, because increasing speed comes at the expense of accuracy, and there is a trade-off between the three goals (speed, storage overhead and accuracy). The traditional approach to address these issues was to develop customized computer algorithms, each designed to answer a specific type of question (called query type), by striking a compromise between these goals. Such a process has proven to be time consuming and needs to be repeated for each query type. The ultimate goal is to design a system that can automatically search among possible algorithms to find the ones with the best time/space/accuracy trade-offs for each query type. This project takes a first step in this direction by utilizing Artificial Intelligence (AI) to replace all customized algorithms for different query types with a single neural network system (similar to network of neurons in human brain) that can answer any query type after seeing enough examples of questions and answers. Such an approach will significantly reduce (or eliminate) human intervention in designing/choosing algorithms for different query types, while improving upon the time/space/accuracy trade-offs for answering them. This will benefit a broad range of application domains, especially given the data-driven nature of most of today's applications. For example, this approach will greatly benefit data-driven areas, such as smart-cities, transportation, energy, environment and health. Finally, this project will also be extremely attractive to diverse students (both undergraduates and graduates) who are these days more attracted to AI, and will recruit them to contribute to the field of data management.The main thesis of this project is that queries can be represented by functions which can be approximated. Thus, a generic neural network framework will be developed, dubbed NeuroDB, that can learn a model to approximate the query function. The learned model can then be used to find approximate answers to any type of query. The initial focus of NeuroDB will be on distance-to-nearest-neighbor queries and range aggregate queries, two important building blocks of many real-world applications. Preliminary results show that for these two query types, NeuroDB is orders of magnitude faster compared to state-of-the-art hand-crafted algorithms, and only uses a fraction of the data size for storage, while providing similar accuracy (the model concisely learns query and data distributions). NeuroDB will then be extended to a generic framework that can answer a broader set of query types, thus replacing different database operations with neural networks. The challenges in doing so are twofold. First, designing a neural network even for answering a specific query type is challenging. It requires a deeper understanding, both theoretically and empirically, of the approximation power of neural networks, and how it changes with network architecture and training process, for the specific query type. Second, the observations about specific query types need to be generalized to design a framework that can answer other query types, and a learning methodology is needed that is able to train accurate models for answering them. NeuroDB will be developed as an open-source software system to be used and extended by the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们正在见证数据爆炸的时代。大量的数据由人、传感器和计算机不断产生,然后存储在计算机系统中。 许多现代应用要求这些系统快速、准确地回答有关数据的问题,并且存储成本低。这是一项具有挑战性的任务,因为提高速度是以牺牲准确性为代价的,并且在三个目标(速度,存储开销和准确性)之间存在权衡。 解决这些问题的传统方法是开发定制的计算机算法,每个算法都旨在通过在这些目标之间达成妥协来回答特定类型的问题(称为查询类型)。事实证明,这样的过程非常耗时,并且需要针对每种查询类型重复进行。最终目标是设计一个系统,可以自动搜索可能的算法,找到最好的时间/空间/准确性权衡每种查询类型。该项目朝着这个方向迈出了第一步,利用人工智能(AI)将不同查询类型的所有定制算法替换为单个神经网络系统(类似于人脑中的神经元网络),该系统可以在看到足够的问题和答案示例后回答任何查询类型。这样的方法将显著减少(或消除)在针对不同查询类型设计/选择算法时的人为干预,同时改进用于回答它们的时间/空间/准确性权衡。这将使广泛的应用领域受益,特别是考虑到当今大多数应用程序的数据驱动特性。例如,这种方法将大大有利于数据驱动的领域,如智能城市,交通,能源,环境和健康。 最后,这个项目也将非常吸引不同的学生(包括本科生和研究生),他们现在更喜欢人工智能,并将招募他们为数据管理领域做出贡献。这个项目的主要论点是查询可以由可以近似的函数表示。因此,将开发一个通用的神经网络框架,称为NeuroDB,它可以学习一个模型来近似查询函数。然后,学习的模型可以用于找到任何类型查询的近似答案。NeuroDB最初的重点将是距离到最近邻查询和范围聚合查询,这是许多现实世界应用程序的两个重要构建块。初步结果表明,对于这两种查询类型,NeuroDB比最先进的手工算法快了几个数量级,并且只使用了一小部分数据大小进行存储,同时提供了类似的准确性(模型简明地学习查询和数据分布)。然后,NeuroDB将扩展为一个通用框架,可以回答更广泛的查询类型,从而用神经网络取代不同的数据库操作。这样做的挑战是双重的。首先,设计一个神经网络,即使是回答特定的查询类型也是具有挑战性的。它需要从理论和经验上更深入地理解神经网络的近似能力,以及它如何随着网络架构和训练过程的变化而变化。其次,需要对特定查询类型的观察进行概括,以设计一个可以回答其他查询类型的框架,并且需要一种能够训练准确模型来回答它们的学习方法。NeuroDB将被开发为一个开源软件系统,供研究界使用和扩展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Neural Database for Differentially Private Spatial Range Queries
- DOI:10.14778/3510397.3510404
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Sepanta Zeighami;Ritesh Ahuja;G. Ghinita;C. Shahabi
- 通讯作者:Sepanta Zeighami;Ritesh Ahuja;G. Ghinita;C. Shahabi
Differentially-Private Publication of Origin-Destination Matrices with Intermediate Stops
- DOI:10.48786/edbt.2022.04
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Sina Shaham;G. Ghinita;C. Shahabi
- 通讯作者:Sina Shaham;G. Ghinita;C. Shahabi
Differentially Private Occupancy Monitoring from WiFi Access Points
- DOI:10.1109/mdm55031.2022.00081
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Abbas Zaidi;Ritesh Ahuja;C. Shahabi
- 通讯作者:Abbas Zaidi;Ritesh Ahuja;C. Shahabi
A Neural Approach to Spatio-Temporal Data Release with User-Level Differential Privacy
- DOI:10.1145/3588701
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Ritesh Ahuja;Sepanta Zeighami;G. Ghinita;C. Shahabi
- 通讯作者:Ritesh Ahuja;Sepanta Zeighami;G. Ghinita;C. Shahabi
HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting
- DOI:10.1609/aaai.v36i4.20338
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Chenyu Wang;Zongyu Lin;Xiaochen Yang;Jiao Sun;Mingxuan Yue;C. Shahabi
- 通讯作者:Chenyu Wang;Zongyu Lin;Xiaochen Yang;Jiao Sun;Mingxuan Yue;C. Shahabi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrus Shahabi其他文献
Users plan optimization for participatory urban texture documentation
- DOI:
10.1007/s10707-012-0166-7 - 发表时间:
2012-08-11 - 期刊:
- 影响因子:2.600
- 作者:
Houtan Shirani-Mehr;Farnoush Banaei-Kashani;Cyrus Shahabi - 通讯作者:
Cyrus Shahabi
Location privacy: going beyond K-anonymity, cloaking and anonymizers
- DOI:
10.1007/s10115-010-0286-z - 发表时间:
2010-03-03 - 期刊:
- 影响因子:3.100
- 作者:
Ali Khoshgozaran;Cyrus Shahabi;Houtan Shirani-Mehr - 通讯作者:
Houtan Shirani-Mehr
A hybrid aggregation and compression technique for road network databases
- DOI:
10.1007/s10115-008-0132-8 - 发表时间:
2008-03-14 - 期刊:
- 影响因子:3.100
- 作者:
Ali Khoshgozaran;Ali Khodaei;Mehdi Sharifzadeh;Cyrus Shahabi - 通讯作者:
Cyrus Shahabi
Cyrus Shahabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrus Shahabi', 18)}}的其他基金
RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
- 批准号:
2027794 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: PE4GQ - Practical Encryption for Geospatial Queries on Private Data
III:小型:协作研究:PE4GQ - 私有数据地理空间查询的实用加密
- 批准号:
1910950 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
2016 IEEE Mobile Data Management (MDM 2016) Conference: Student Activities Support; Porto, Portugal; June 13-16, 2016
2016 IEEE移动数据管理(MDM 2016)会议:学生活动支持;
- 批准号:
1632538 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BDD: Human-Centered Situational Awareness Platform for Disaster Response and Recovery
BDD:以人为本的灾难响应和恢复态势感知平台
- 批准号:
1461963 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Small: GeoCrowd - A Generic Framework for Trustworthy Spatial Crowdsourcing
III:小型:GeoCrowd - 值得信赖的空间众包的通用框架
- 批准号:
1320149 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
III: Small: Real-World Traffic Data Management for Time-Dependent Spatial Queries
III:小型:用于时间相关空间查询的真实交通数据管理
- 批准号:
1115153 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CT-ISG: Enabling Location Privacy; Moving beyond k-anonymity, cloaking and anonymizers
CT-ISG:启用位置隐私;
- 批准号:
0831505 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SGER: Blind Evaluation of Spatial Queries with Hilbert Curves to Preserve Location Privacy
SGER:使用希尔伯特曲线对空间查询进行盲评估以保护位置隐私
- 批准号:
0742811 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
HYDRA- High Performance Data Recording Architecture for Streaming Media
HYDRA-流媒体高性能数据记录架构
- 批准号:
0534761 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
PECASE: Management of Immersive Sensor Data Streams
PECASE:沉浸式传感器数据流的管理
- 批准号:
0238560 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




