BDD: Human-Centered Situational Awareness Platform for Disaster Response and Recovery
BDD:以人为本的灾难响应和恢复态势感知平台
基本信息
- 批准号:1461963
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Efficient and thorough data collection and its timely analysis are critical to any disaster response and recovery system in order to save people's lives during disasters. However, access to comprehensive data in disaster areas and their quick analysis to transform the data to actionable knowledge are major data science challenges. Moreover, the effective presentation of the collected knowledge to human decision-makers is an open problem. In this project, these challenges of data collection, analysis and presentation are collectively referred to as 'Situational Awareness', and are studied by a collaborative team of data scientists from the University of Southern California (USC) in United States and the National Institute of Informatics (NII) in Japan.The first objective of this project is to devise effective techniques for comprehensive data collection. The challenge is that during disaster the availability of information is spatially biased and some areas are not well covered by available information. Towards this end, USC's spatial crowdsourcing platform, dubbed MediaQ, is utilized to collect pictures and videos on-demand from mobile devices of people in the vicinity of the disaster areas to facilitate effective collection, orchestration and aggregation of information. The second objective is to develop efficient methods for organizing and analyzing incoming data streams for human decision makers, given the challenges of volume and variety of unstructured data whose veracity is unknown. The collaborative US-Japan team takes advantage of their combined expertise in developing Spatial-Temporal-Thematic analytics engines and Geospatial Image Filtering Tools to meet this objective. Finally, for an effective presentation of the knowledge to human stakeholders, NII's DiVE virtual environment engine is used to facilitate seamless presentation and communication for both onsite (humans in the field) and offsite (disaster managers at the center) stakeholders.
有效和全面的数据收集及其及时分析对于任何灾害应对和恢复系统都至关重要,以便在灾害期间挽救人们的生命。然而,获取灾区的全面数据并对其进行快速分析以将数据转化为可操作的知识是数据科学的主要挑战。此外,收集到的知识的有效呈现给人类决策者是一个开放的问题。 在这个项目中,这些数据收集、分析和呈现的挑战被统称为“情境意识”,并由来自美国南加州大学(USC)和日本国立信息学研究所(NII)的数据科学家组成的合作团队进行研究。这个项目的第一个目标是设计有效的技术来进行全面的数据收集。面临的挑战是,在灾害期间,信息的提供存在空间偏差,有些地区没有得到充分的信息。为此,南加州大学的空间众包平台,被称为MediaQ,被用来收集图片和视频点播从移动的设备的人在灾区附近,以促进有效的收集,编排和汇总信息。第二个目标是开发有效的方法来组织和分析人类决策者的传入数据流,考虑到其准确性未知的非结构化数据的数量和种类的挑战。美日合作团队利用他们在开发空间-时间-主题分析引擎和地理空间图像过滤工具方面的综合专业知识来实现这一目标。最后,为了向人类利益相关者有效地展示知识,NII的DiVE虚拟环境引擎用于促进现场(现场人员)和非现场(中心的灾难管理人员)利益相关者的无缝展示和沟通。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrus Shahabi其他文献
Users plan optimization for participatory urban texture documentation
- DOI:
10.1007/s10707-012-0166-7 - 发表时间:
2012-08-11 - 期刊:
- 影响因子:2.600
- 作者:
Houtan Shirani-Mehr;Farnoush Banaei-Kashani;Cyrus Shahabi - 通讯作者:
Cyrus Shahabi
Location privacy: going beyond K-anonymity, cloaking and anonymizers
- DOI:
10.1007/s10115-010-0286-z - 发表时间:
2010-03-03 - 期刊:
- 影响因子:3.100
- 作者:
Ali Khoshgozaran;Cyrus Shahabi;Houtan Shirani-Mehr - 通讯作者:
Houtan Shirani-Mehr
A hybrid aggregation and compression technique for road network databases
- DOI:
10.1007/s10115-008-0132-8 - 发表时间:
2008-03-14 - 期刊:
- 影响因子:3.100
- 作者:
Ali Khoshgozaran;Ali Khodaei;Mehdi Sharifzadeh;Cyrus Shahabi - 通讯作者:
Cyrus Shahabi
Cyrus Shahabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrus Shahabi', 18)}}的其他基金
III: Small: NeuroDB: A Neural Network Framework for Efficiently Answering Database Queries Approximately
III:小:NeuroDB:一种高效回答数据库查询的神经网络框架
- 批准号:
2128661 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RAPID: Collaborative: REACT: Real-time Contact Tracing and Risk Monitoring via Privacy-enhanced Mobile Tracking
RAPID:协作:REACT:通过隐私增强型移动跟踪进行实时接触者追踪和风险监控
- 批准号:
2027794 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: PE4GQ - Practical Encryption for Geospatial Queries on Private Data
III:小型:协作研究:PE4GQ - 私有数据地理空间查询的实用加密
- 批准号:
1910950 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
2016 IEEE Mobile Data Management (MDM 2016) Conference: Student Activities Support; Porto, Portugal; June 13-16, 2016
2016 IEEE移动数据管理(MDM 2016)会议:学生活动支持;
- 批准号:
1632538 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: GeoCrowd - A Generic Framework for Trustworthy Spatial Crowdsourcing
III:小型:GeoCrowd - 值得信赖的空间众包的通用框架
- 批准号:
1320149 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: Real-World Traffic Data Management for Time-Dependent Spatial Queries
III:小型:用于时间相关空间查询的真实交通数据管理
- 批准号:
1115153 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CT-ISG: Enabling Location Privacy; Moving beyond k-anonymity, cloaking and anonymizers
CT-ISG:启用位置隐私;
- 批准号:
0831505 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SGER: Blind Evaluation of Spatial Queries with Hilbert Curves to Preserve Location Privacy
SGER:使用希尔伯特曲线对空间查询进行盲评估以保护位置隐私
- 批准号:
0742811 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
HYDRA- High Performance Data Recording Architecture for Streaming Media
HYDRA-流媒体高性能数据记录架构
- 批准号:
0534761 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
PECASE: Management of Immersive Sensor Data Streams
PECASE:沉浸式传感器数据流的管理
- 批准号:
0238560 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
- 批准号:
2348926 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
- 批准号:
2242719 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Human-Centered Computing for Social Good
REU 网站:以人为本的计算,造福社会
- 批准号:
2349070 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A human-centered modeling approach to simulate best management practices and behaviors under uncertainty to meet water quality guidelines
以人为本的建模方法,用于模拟不确定情况下的最佳管理实践和行为,以满足水质准则
- 批准号:
2342309 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-JST: An Inclusive Human-Centered Risk Management Modeling Framework for Flood Resilience
NSF-JST:以人为本的包容性防洪风险管理模型框架
- 批准号:
2342842 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
- 批准号:
2312643 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




