BBSRC-NSF/BIO: Quantum-enhanced long-range energy capture

BBSRC-NSF/BIO:量子增强远程能量捕获

基本信息

项目摘要

Photosynthesis powers life on Earth, providing all of our food, oxygen and most of our energy. The general principles underpinning the first steps of photosynthesis have been conserved by evolution; a protein network, termed the antenna, captures solar energy and delivers it to a dedicated protein, the reaction center, where electricity is generated. Remarkably, these steps can occur with almost 100% quantum efficiency. Recent observations suggest that nature may achieve this high efficiency by utilizing wavelike transport of absorbed solar energy from the antenna to the reaction centers. However, the presence and role of such quantum mechanical phenomena in natural systems are highly debated. One challenge to characterizing their impact has been that experiments on the antenna were performed in non-native and isolated solutions. In this project, which is a collaboration between researchers at the Michigan Institute of Technology (US) and the University of Sheffield (UK), the investigators will attempt a step-change in our understanding by investigating how solar energy is transported within the native network. These experiments will simultaneously uncover the mechanisms that give rise to efficient capture and conversion of solar energy to electricity and identify the interactions that enhance or repress the underlying quantum behaviors. They will then seek to exploit these natural design principles to build non-native systems with enhanced abilities to propagate energy efficiently over increased distances. These studies will thereby lay the groundwork for improving energy transport in biohybrid and semi-conductor devices for application to emerging technologies relevant to consumer electronics, solar energy capture, quantum computing, quantum communications and photocatalysts. The project will simultaneously train the next generation of researchers at the biology/physics interface and disseminate the fascinating fundamental science underpinning natural solar energy conversion to the general public.In photosynthetic light harvesting and solar energy conversion, the protein architecture involved varies dramatically with species, yet the general design is conserved; a network containing light-harvesting complexes (LHCs) absorbs and transfers energy to a reaction center (RC) for charge separation. Remarkably, absorption to charge separation can occur with almost 100% quantum efficiency. Experimental observations of oscillations within the excited state manifold led to a body of theoretical work that suggested the high efficiency is, in part, due to quantum coherence. However, the measured oscillations have been increasingly assigned to vibronic coherences, and experimental evidence of quantum coherence or its role in light harvesting has been elusive. To date, experiments have all been performed on isolated LHCs and RCs, yet these proteins function natively within a network. Furthermore, non-native interactions introduced through lithography have been shown to enhance the properties of the LHC, including energy transport and oscillator strength from exciton-plasmon coupling. Thus, the behaviors within the native network as well as the ability of non-native interactions to impact this behavior have not been investigated. In this project, the investigators will use different in vitro platforms to replicate the native network and introduce non-native interactions for different combinations of photosynthetic proteins. They will use advanced spectroscopy and microscopy to characterize excited-state properties, energy transport, solar energy conversion, and network geometry. The results will provide a blueprint for how nanoscale organization and interactions direct energy for light harvesting and solar energy conversion. This collaborative US/UK project is supported by the US National Science Foundation and the UK Biotechnology and Biological Sciences Research Council.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光合作用为地球上的生命提供能量,提供我们所有的食物、氧气和大部分能量。支撑光合作用第一步的一般原理已经被进化保守了;一个被称为天线的蛋白质网络捕捉太阳能,并将其传递给专门的蛋白质,即产生电力的反应中心。值得注意的是,这些步骤可以以几乎100%的量子效率发生。最近的观察表明,自然界可以通过利用吸收的太阳能从天线到反应中心的波状传输来实现这种高效率。然而,这种量子力学现象在自然系统中的存在和作用一直备受争议。确定其影响的一个挑战是,在天线上进行的实验是在非本地和孤立的解决方案中进行的。在这个由美国密歇根理工学院和英国谢菲尔德大学的研究人员合作的项目中,研究人员将通过调查太阳能在本地网络中的传输方式来尝试改变我们的理解。这些实验将同时揭示有效捕获太阳能并将其转化为电能的机制,并确定增强或抑制潜在量子行为的相互作用。然后,他们将寻求利用这些自然设计原则来构建具有增强能力的非本地系统,以便在更长的距离内高效地传播能量。因此,这些研究将为改善生物混合和半导体设备中的能量传输奠定基础,以便应用于与消费电子、太阳能捕获、量子计算、量子通信和光催化剂相关的新兴技术。该项目将同时培训生物/物理界面的下一代研究人员,并向公众传播支持自然太阳能转换的迷人的基础科学。在光合光收集和太阳能转换中,所涉及的蛋白质结构因物种而异,但总体设计是保守的;包含捕光复合体(LHC)的网络吸收能量并将其传输到反应中心(RC)以进行电荷分离。值得注意的是,吸收到电荷分离可以发生几乎100%的量子效率。对激发态流形内振荡的实验观察导致了一系列理论工作,表明高效率在一定程度上是由于量子相干。然而,测量到的振荡越来越多地被归类为振动相干,而量子相干或其在光收集中作用的实验证据一直难以捉摸。到目前为止,实验都是在分离的LHC和RCS上进行的,但这些蛋白质在网络中具有天然的功能。此外,通过光刻引入的非自然相互作用已经被证明增强了大型强子对撞机的性质,包括激子-等离子体耦合的能量传输和振子强度。因此,尚未调查本地网络内的行为以及非本地交互影响此行为的能力。在这个项目中,研究人员将使用不同的体外平台来复制天然网络,并为不同的光合蛋白组合引入非天然相互作用。他们将使用先进的光谱和显微镜来表征激发态的性质、能量传输、太阳能转换和网络几何结构。这一结果将为纳米尺度的组织和相互作用如何引导能量用于光收集和太阳能转换提供蓝图。这一美英合作项目得到了美国国家科学基金会和英国生物技术和生物科学研究委员会的支持。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photoprotective conformational dynamics of photosynthetic light-harvesting proteins
  • DOI:
    10.1016/j.bbabio.2022.148543
  • 发表时间:
    2022-02-26
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Manna, Premashis;Schlau-Cohen, Gabriela S.
  • 通讯作者:
    Schlau-Cohen, Gabriela S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabriela Schlau-Cohen其他文献

Observing transmembrane conformational signaling with smFRET
  • DOI:
    10.1016/j.bpj.2022.11.238
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Gabriela Schlau-Cohen;Mikaila Hoffman;Shwetha Srinivasan
  • 通讯作者:
    Shwetha Srinivasan
Lipid dependence of the conformational coupling across the membrane bilayer of full-length epidermal growth factor receptor
  • DOI:
    10.1016/j.bpj.2022.11.1362
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Shwetha Srinivasan;Raju Regmi;Xingcheng Lin;Courtney Dreyer;Xuyan Chen;Steven Quinn;Wei He;Matthew A. Coleman;Kermit L. Carraway III;Bin Zhang;Gabriela Schlau-Cohen
  • 通讯作者:
    Gabriela Schlau-Cohen
Single-Molecule Investigation of Conformational Changes in Epidermal Growth Factor Receptor
  • DOI:
    10.1016/j.bpj.2019.11.1141
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Raju Regmi;Shwetha Srinivasan;Xingcheng Lin;Steven Quinn;Wei He;Kermit L. Carraway;Matthew A. Coleman;Bin Zhang;Gabriela Schlau-Cohen
  • 通讯作者:
    Gabriela Schlau-Cohen

Gabriela Schlau-Cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
    31981220281
  • 批准年份:
    2019
  • 资助金额:
    2.3 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2.6 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
    81981220037
  • 批准年份:
    2019
  • 资助金额:
    2.1 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    1.2 万元
  • 项目类别:
    国际(地区)合作与交流项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
  • 批准号:
    BB/Y008774/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
21-BBSRC/NSF-BIO: Developing large serine integrases as tools for constructing and manipulating synthetic replicons.
21-BBSRC/NSF-BIO:开发大型丝氨酸整合酶作为构建和操作合成复制子的工具。
  • 批准号:
    BB/X012085/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO Determining the Roles of Fusarium Effector Proteases in Plant Pathogenesis
UKRI/BBSRC-NSF/BIO 确定镰刀菌效应蛋白酶在植物发病机制中的作用
  • 批准号:
    BB/X012131/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO. Globally harmonized re-analysis of Data Independent Acquisition (DIA) proteomics datasets enables the creation of new resources
BBSRC-NSF/BIO。
  • 批准号:
    BB/X002020/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了