Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
基本信息
- 批准号:2131228
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).This collaborative project between Tuskegee University (TU), a HBCU institution, and the Pennsylvania State University (PSU), an R1 research-intensive institution, is to jointly promote research and education excellence in cybersecurity through the research and development of advanced network intrusion detection solutions to accurately and quickly detect intrusion attacks -- i.e., unauthorized activities on a network that involve stealing valuable resources and/or jeopardize the security of the network. In particular, the team’s solutions will be based on an AI based anomaly detection framework, treating intrusion attacks as rare or anomalous observations that deviate from other observations, exploiting recent advancements in machine learning, natural language processing, and data science techniques to detect these deviations. Based on the research results and collaboration efforts, the project team will improve TU’s research capacity in cybersecurity, machine learning, and data science, and enhance the curriculum for teaching these topics and latest findings to undergraduate and graduate students at both TU and PSU.In this project, the team will explore how to advance existing anomaly detection systems (ADS) through investigating ways to exploit and advance state-of-the-art methods in data science and machine learning in the context of network intrusion detection. For instance, the team will explore the recent successes in detecting subtle misinformation using advanced techniques (e.g., data augmentation via generative adversarial networks, co-attention networks, few-shot learning, and adversarial examples) by the PSU team and extend/apply them to other intrusion detection tasks. The improved ADS to be developed will include (1) novel strategies for collecting, labeling, enhancing, and augmenting data for advanced analytics, (2) solutions for data representation, feature/representation learning, and classification of system behaviors, and (3) an implementation framework for developing ADS tools. The team expects the new techniques to help achieve state-of-the-art accuracy in network intrusion detection with low false-positive rates. Further, the project will provide research opportunities for people from historically underrepresented groups in computing that will enable students to pursue graduate studies in cybersecurity and machine learning.This project is jointly funded by the Computer and Information Science and Engineering Minority-Serving Institutions Research Expansion Program (CISE-MSI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案资助(公法117-2)。塔斯基吉大学(TU),HBCU机构和宾夕法尼亚州立大学(PSU),R1研究密集型机构之间的合作项目,通过研究和开发先进的网络入侵检测解决方案,共同促进网络安全方面的研究和教育准确快速地检测入侵攻击--即,网络上未经授权的活动,涉及窃取宝贵的资源和/或危及网络的安全。特别是,该团队的解决方案将基于基于人工智能的异常检测框架,将入侵攻击视为偏离其他观察的罕见或异常观察,利用机器学习,自然语言处理和数据科学技术的最新进展来检测这些偏差。基于研究成果和合作努力,项目团队将提高TU在网络安全,机器学习和数据科学方面的研究能力,并加强课程,为TU和PSU的本科生和研究生教授这些主题和最新发现。在这个项目中,该小组将探索如何通过研究利用和改进现有的异常检测系统(ADS)的方法,网络入侵检测背景下的数据科学和机器学习中的艺术方法。例如,该团队将探索最近使用先进技术(例如,通过生成对抗网络,共同注意力网络,少量学习和对抗示例进行数据增强),并将其扩展/应用于其他入侵检测任务。待开发的改进ADS将包括(1)用于收集、标记、增强和扩充高级分析数据的新策略,(2)用于数据表示、特征/表示学习和系统行为分类的解决方案,以及(3)用于开发ADS工具的实现框架。该团队希望新技术能够帮助实现最先进的网络入侵检测准确性,同时误报率较低。此外,本发明还该项目将为计算领域历史上代表性不足的群体提供研究机会,使学生能够攻读网络安全和机器学习方面的研究生课程。该项目由计算机和信息科学与工程少数民族服务机构研究扩展计划共同资助(CISE-MSI)和刺激竞争研究的既定计划(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fan Wu其他文献
A Hybrid-Element Approach to Design Wideband ME-Dipole Transmitarray with Improved Aperture Efficiency
设计具有更高孔径效率的宽带 ME 偶极子发射阵列的混合元件方法
- DOI:
10.1109/lawp.2022.3167284 - 发表时间:
2022 - 期刊:
- 影响因子:4.2
- 作者:
Fan Wu;Lei Xiang;Jingxue Wang;Kwai-Man Luk;Wei Hong - 通讯作者:
Wei Hong
Controllable Coating of Polypyrrole on Silicon Carbide Nanowires as a Core−Shell Nanostructure: A Facile Method To Enhance Attenuation Characteristics against Electromagnetic Radiation
以碳化硅纳米线为核壳纳米结构的可控聚吡咯涂层:一种增强电磁辐射衰减特性的简便方法
- DOI:
10.1021/acssuschemeng.8b04676 - 发表时间:
2019 - 期刊:
- 影响因子:8.4
- 作者:
Fan Wu;Mengxiao Sun;Chaoran Chen;Tian Zhou;Yilu Xia;Aming Xie;Yuanfang Shang - 通讯作者:
Yuanfang Shang
Global scale life cycle environmental impacts of single- and multi-walled carbon nanotube synthesis processes
单壁和多壁碳纳米管合成过程的全球范围生命周期环境影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Sila Temizel;Fan Wu;A. Hicks - 通讯作者:
A. Hicks
Near-Five-Vector SVPWM Algorithm for Five-Phase Six-Leg Inverters under Unbalanced Load Conditions
不平衡负载条件下五相六桥臂逆变器的近五矢量SVPWM算法
- DOI:
10.6113/jpe.2014.14.1.61 - 发表时间:
2014 - 期刊:
- 影响因子:1.4
- 作者:
Ping Zheng;Pengfei Wang;Yi Sui;Chengde Tong;Fan Wu;Tiecai Li - 通讯作者:
Tiecai Li
Defining genetic intra-tumor heterogeneity: a chronological annotation of mutational pathways
定义肿瘤内遗传异质性:突变途径的时间顺序注释
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Wentao Luo;Fan Wu;S. Atlas;G. Pickett;K. Leslie;D. Dai - 通讯作者:
D. Dai
Fan Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fan Wu', 18)}}的其他基金
Collaborative Research: CyberCorps Scholarship for Service (Renewal): Strengthening the National Cybersecurity Workforce with Integrated Learning of AI/ML and Cybersecurity
合作研究:网络军团服务奖学金(续展):通过人工智能/机器学习和网络安全的综合学习加强国家网络安全劳动力
- 批准号:
2234911 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Authentic Learning Modules for DevOps Security Education
DevOps 安全教育的真实学习模块
- 批准号:
2209637 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Authentic Learning of Machine Learning in Cybersecurity with Portable Hands-on Labware
协作研究:SaTC:EDU:使用便携式动手实验室软件对网络安全中的机器学习进行真实学习
- 批准号:
2100134 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761735 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SFS Program: Strengthening the National Cyber Security Workforce
合作研究:SFS 计划:加强国家网络安全劳动力
- 批准号:
1663350 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Secure Mobile Software Development (SMSD) Through Curriculum and Faculty Development
合作研究:通过课程和师资发展拓宽安全移动软件开发 (SMSD)
- 批准号:
1723586 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Partnership to Provide Technology Experiences through Aerial Drones in High Schools of the Alabama Black Belt
合作伙伴通过空中无人机为阿拉巴马州黑带高中提供技术体验
- 批准号:
1614845 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Project: Capacity Building in Mobile Security Through Curriculum and Faculty Development
合作项目:通过课程和师资发展进行移动安全能力建设
- 批准号:
1241670 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318593 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318592 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321490 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321532 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Systems Support for Run-Anywhere Serverless
协作研究:CISE:大型:对 Run-Anywhere Serverless 的系统支持
- 批准号:
2321725 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318696 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318711 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant