Collaborative Research: SaTC: EDU: Authentic Learning of Machine Learning in Cybersecurity with Portable Hands-on Labware

协作研究:SaTC:EDU:使用便携式动手实验室软件对网络安全中的机器学习进行真实学习

基本信息

  • 批准号:
    2100134
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).As cybersecurity threats grow in complexity, the burden of responding to these threats also increases. Early detection of security vulnerabilities and threats is needed. Machine learning (ML) approaches enable the analysis of large amounts of data and could be used to predict and prevent future cybersecurity threats. This project will enhance the cybersecurity curricula across computing disciplines using an authentic learning approach. Authentic learning approaches engage students’ active learning and problem-solving capabilities by using hands-on approaches and real-world topics. This approach has been increasingly popular for teaching cybersecurity but is less commonly used to teach ML in cybersecurity. The project will design and develop ten portable labware modules that will support a broad audience to learn ML in cybersecurity effectively and result in more efficient student engagement. The resources developed will support authentic learning of cybersecurity topics, and increase student learning and interests as well as faculty collaboration between Kennesaw State University and Tuskegee University. The project will disseminate the resources via faculty workshops, conference publications, and webinars.The design of the proposed learning modules will be based on popular machine learning algorithms and publicly available free datasets related to common cybersecurity problems such as Denial of Service, CAPTCHA bypassing, and SQL Injection attacks. The modules will be deployed on the open-source Google CoLaboratory (CoLab) environment. Learners will access and practice all labs interactively using a browser anywhere and anytime without a need for time-consuming installation and configuration. The hands-on labs will provide students with step-by-step interactive activities to learn ML models in the CoLab environment, followed by testing of models. The project will seek to answer the following research questions: (i) Do innovative, authentic learning-based ML in cybersecurity resources increase learners’ knowledge and interest in solving real-world problems and careers in the cybersecurity workforce? (ii) Does the hands-on labware developed by the project impact students’ grades, learning, attitudes, motivation, and self-efficacy towards ML in cybersecurity? (iii) What is the relationship between students’ motivation and ML in cybersecurity learning? (iv) Do participating faculty perceive the ML in cybersecurity authentic learning resources as effective in engaging diverse, underrepresented students in cybersecurity? The project evaluation will use a mixed-methods design and administrative data, focus groups, and survey data. The quantitative and qualitative data generated from these sources will be used for formative and summative assessments. This project is supported by the Secure and Trustworthy Cyberspace (SaTC) program, which funds proposals that address cybersecurity and privacy, and in this case specifically cybersecurity education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。随着网络安全威胁的复杂性增加,应对这些威胁的负担也会增加。需要及早发现安全漏洞和威胁。机器学习(ML)方法可以分析大量数据,并可用于预测和预防未来的网络安全威胁。该项目将使用真实的学习方法加强跨计算学科的网络安全课程。真实的学习方法通过使用实践方法和现实世界的主题来培养学生的主动学习和解决问题的能力。这种方法在网络安全教学中越来越受欢迎,但在网络安全中不太常用。该项目将设计和开发10个便携式实验室软件模块,以支持广泛的受众有效地学习网络安全中的ML,并提高学生的参与度。 开发的资源将支持网络安全主题的真实学习,并增加学生的学习和兴趣,以及肯尼索州立大学和塔斯基吉大学之间的教师合作。该项目将通过教师研讨会、会议出版物和网络研讨会来传播这些资源。拟议的学习模块的设计将基于流行的机器学习算法和与常见网络安全问题相关的公开可用的免费数据集,如拒绝服务、CAPTCHA绕过和SQL注入攻击。这些模块将部署在开源的Google CoLab(CoLab)环境中。学员将随时随地使用浏览器交互式地访问和练习所有实验,而无需耗时的安装和配置。实践实验室将为学生提供一步一步的互动活动,以在CoLab环境中学习ML模型,然后测试模型。该项目将寻求回答以下研究问题:(i)网络安全资源中创新的,真实的基于学习的ML是否增加了学习者解决现实世界问题和网络安全劳动力职业的知识和兴趣?(ii)该项目开发的动手实验室软件是否会影响学生的成绩、学习、态度、动机和对网络安全中ML的自我效能? (iii)在网络安全学习中,学生的动机与ML之间的关系是什么?(iv)参与教师是否认为网络安全中的ML真实学习资源有效地吸引了网络安全中多样化,代表性不足的学生?项目评估将使用混合方法设计和行政数据,焦点小组和调查数据。从这些来源产生的定量和定性数据将用于形成性和总结性评估。 该项目得到了安全和值得信赖的网络空间(SaTC)计划的支持,该计划为解决网络安全和隐私问题的提案提供资金,在这种情况下,特别是网络安全教育。SATC计划与联邦网络安全研究和发展战略计划和国家隐私研究战略保持一致,以保护和维护网络系统日益增长的社会和经济效益,同时确保安全和隐私。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian Hyperparameter Optimization for Deep Neural Network-Based Network Intrusion Detection
基于深度神经网络的网络入侵检测的贝叶斯超参数优化
  • DOI:
    10.1109/bigdata52589.2021.9671576
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masum, Mohammad;Shahriar, Hossain;Haddad, Hisham;Faruk, Md Jobair;Valero, Maria;Khan, Md Abdullah;Rahman, Mohammad A.;Adnan, Muhaiminul I.;Cuzzocrea, Alfredo;Wu, Fan
  • 通讯作者:
    Wu, Fan
Authentic Learning Approach for Artificial Intelligence Systems Security and Privacy
人工智能系统安全和隐私的真实学习方法
  • DOI:
    10.1109/compsac57700.2023.00151
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akter, Mst Shapna;Shahriar, Hossain;Lo, Dan;Sakib, Nazmus;Qian, Kai;Whitman, Michael;Wu, Fan
  • 通讯作者:
    Wu, Fan
Security Risk and Attacks in AI: A Survey of Security and Privacy
  • DOI:
    10.1109/compsac57700.2023.00284
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md Mostafizur Rahman;Aiasha Siddika Arshi;Md. Golam Moula Mehedi Hasan;Sumayia Farzana Mishu;Hossain Shahriar-Hossain-Sh
  • 通讯作者:
    Md Mostafizur Rahman;Aiasha Siddika Arshi;Md. Golam Moula Mehedi Hasan;Sumayia Farzana Mishu;Hossain Shahriar-Hossain-Sh
Systematic Analysis of Deep Learning Model for Vulnerable Code Detection
漏洞代码检测深度学习模型系统分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Taneem Bin Nazim, Md Jobair
  • 通讯作者:
    Mohammad Taneem Bin Nazim, Md Jobair
Colab Cloud Based Portable and Shareable Hands-on Labware for Machine Learning to Cybersecurity
基于 Colab 云的便携式和可共享实践实验室软件,用于机器学习和网络安全
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Wu其他文献

Anomalous quantum oscillations and evidence for a non-trivial Berry phase in SmSb
SmSb 中的反常量子振荡和非平凡 Berry 相的证据
  • DOI:
    10.1038/s41535-019-0161-4
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Fan Wu;Chunyu Guo;Michael Smidman;Jinglei Zhang;Ye Chen;John Singleton;Huiqiu Yuan
  • 通讯作者:
    Huiqiu Yuan
Inhibition of Fatty Acid Translocase (FAT/CD36) Palmitoylation Enhances Hepatic Fatty Acid β-Oxidation by Increasing Its Localization to Mitochondria and Interaction with Long-Chain Acyl-CoA Synthetase 1
抑制脂肪酸转位酶 (FAT/CD36) 棕榈酰化通过增加其在线粒体中的定位以及与长链酰基辅酶 A 合成酶 1 的相互作用来增强肝脂肪酸 β 氧化
  • DOI:
    10.1089/ars.2021.0157
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shu Zeng;Fan Wu;Mengyue Chen;Yi Fan Li;Mengyue You;Yang Zhang;Ping Yang;Li Wei;Xiong Z. Ruan;Lei Zhao;Yaxi Chen
  • 通讯作者:
    Yaxi Chen
iRGD-reinforced, photo-transformable nanoclusters toward cooperative enhancement of intratumoral penetration and antitumor efficacy
iRGD 增强的光转化纳米团簇可协同增强瘤内渗透和抗肿瘤功效
  • DOI:
    10.1007/s12274-020-2913-7
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Jing Yan;Rongying Zhu;Fan Wu;Ziyin Zhao;Huan Ye;Mengying Hou;Yong Liu;Lichen Yin
  • 通讯作者:
    Lichen Yin
Tetrameric NA of Influenza A virus is required to induce protective antibody responses in mice.
甲型流感病毒的四聚体 NA 是诱导小鼠保护性抗体反应所必需的。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xiren Deng;Qimin Wang;Mei Liu;Qinwen Zheng;Fan Wu;Jinghe Huang
  • 通讯作者:
    Jinghe Huang
Thermal Annealing Induced Formation of Polymeric Nanopillars of Asymmetric Bottlebrush Block Copolymers
热退火诱导不对称瓶刷嵌段共聚物聚合物纳米柱的形成
  • DOI:
    10.1016/j.polymer.2019.121983
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Qian Wang;Fan Wu;Longfei Luo;Zhihao Shen;Xing-He Fan
  • 通讯作者:
    Xing-He Fan

Fan Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Wu', 18)}}的其他基金

Collaborative Research: CyberCorps Scholarship for Service (Renewal): Strengthening the National Cybersecurity Workforce with Integrated Learning of AI/ML and Cybersecurity
合作研究:网络军团服务奖学金(续展):通过人工智能/机器学习和网络安全的综合学习加强国家网络安全劳动力
  • 批准号:
    2234911
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
  • 批准号:
    2131228
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Authentic Learning Modules for DevOps Security Education
DevOps 安全教育的真实学习模块
  • 批准号:
    2209637
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761735
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: SFS Program: Strengthening the National Cyber Security Workforce
合作研究:SFS 计划:加强国家网络安全劳动力
  • 批准号:
    1663350
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Secure Mobile Software Development (SMSD) Through Curriculum and Faculty Development
合作研究:通过课程和师资发展拓宽安全移动软件开发 (SMSD)
  • 批准号:
    1723586
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Partnership to Provide Technology Experiences through Aerial Drones in High Schools of the Alabama Black Belt
合作伙伴通过空中无人机为阿拉巴马州黑带高中提供技术体验
  • 批准号:
    1614845
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Project: Capacity Building in Mobile Security Through Curriculum and Faculty Development
合作项目:通过课程和师资发展进行移动安全能力建设
  • 批准号:
    1241670
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂电子产品超精密加工及检测关键技术研究与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了