Authentic Learning Modules for DevOps Security Education

DevOps 安全教育的真实学习模块

基本信息

  • 批准号:
    2209637
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Information technology (IT) organizations use development and operations (DevOps) to deliver software-based services rapidly to end-users. During software development, various documents are often created. These materials, referred to as software artifacts, may include design documents, source code, risk assessments, and other project plans or documentation. Software artifacts used in DevOps yield tremendous benefits for IT organizations. However, without the secure development of these artifacts, deployed software can contain security vulnerabilities which malicious users can exploit to cause serious consequences for organizations. Therefore, students who are poised to become next-generation professionals need to be educated on (i) the consequences of security weaknesses that are commonplace in DevOps artifacts and (ii) how security weaknesses can be mitigated through secure development. This project aims to create an engaging and motivating learning environment that encourages all computer science students to learn cybersecurity integration into artifacts used for DevOps. The project has the potential to transform computer science education in the cross-cutting areas of software engineering and cybersecurity and grow a cybersecurity workforce that is well-versed in secure software development practices and techniques. Principal investigators from Tennessee Tech University, Kennesaw State University, and Tuskegee University will collaborate on developing and deploying authentic learning-based modules for DevOps security education (ALAMOSE). The ALAMOSE project will leverage authentic learning, which provides students with practical knowledge to solve real-world problems. Pre-lab content dissemination, hands-on exercise, and post-lab activities will be included. The modules will be deployed in existing cybersecurity, software engineering, and IT system security courses across the three institutions, potentially impacting students from diverse backgrounds. Faculty workshops and outreach webinars will be employed to promote the adoption of the modules and to gather and present lessons learned and experiential feedback. In addition, the modules will be available to educators nationwide through code and container sharing platforms, such as GitHub and DockerHub. This project is supported by the Secure and Trustworthy Cyberspace (SaTC) program, which funds proposals that address cybersecurity and privacy, and in this case specifically cybersecurity education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息技术(IT)组织使用开发和运营(DevOps)向最终用户快速交付基于软件的服务。在软件开发过程中,经常会创建各种文档。这些材料被称为软件工件,可能包括设计文档、源代码、风险评估,以及其他项目计划或文档。在DevOps中使用的软件构件为IT组织带来了巨大的好处。然而,如果没有这些构件的安全开发,部署的软件可能包含安全漏洞,恶意用户可以利用这些漏洞给组织造成严重后果。因此,准备成为下一代专业人士的学生需要接受以下方面的教育:(1)DevOps工件中常见的安全弱点的后果;(2)如何通过安全开发来减轻安全弱点。该项目旨在创造一个吸引人的、激励人的学习环境,鼓励所有计算机科学专业的学生学习将网络安全集成到用于DevOps的工件中。该项目有可能改变软件工程和网络安全交叉领域的计算机科学教育,并培养一支精通安全软件开发实践和技术的网络安全劳动力。来自田纳西理工大学、肯尼索州立大学和塔斯基吉大学的主要研究人员将合作为DevOps安全教育(ALAMOSE)开发和部署真正的基于学习的模块。ALAMOSE项目将利用真实的学习,为学生提供解决现实问题的实用知识。包括实验前的内容传播、动手练习和实验后的活动。这些模块将部署在三所大学现有的网络安全、软件工程和IT系统安全课程中,可能会影响到来自不同背景的学生。将采用教师研讨会和外展网络研讨会来促进模块的采用,并收集和介绍经验教训和经验反馈。此外,这些模块将通过代码和容器共享平台(如GitHub和DockerHub)提供给全国的教育工作者。该项目由安全与可信网络空间(SaTC)计划支持,该计划资助解决网络安全和隐私问题的提案,在这种情况下,特别是网络安全教育。SaTC项目与《联邦网络安全研究与发展战略计划》和《国家隐私研究战略》保持一致,旨在保护和维护网络系统日益增长的社会和经济效益,同时确保安全和隐私。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating Novel Approaches to Defend Software Supply Chain Attacks
研究防御软件供应链攻击的新方法
Case Study-Based Approach of Quantum Machine Learning in Cybersecurity: Quantum Support Vector Machine for Malware Classification and Protection
基于案例研究的网络安全量子机器学习方法:用于恶意软件分类和保护的量子支持向量机
  • DOI:
    10.1109/compsac57700.2023.00161
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akter, Mst Shapna;Shahriar, Hossain;Iqbal Ahamed, Sheikh;Datta Gupta, Kishor;Rahman, Muhammad;Mohamed, Atef;Rahman, Mohammad;Rahman, Akond;Wu, Fan
  • 通讯作者:
    Wu, Fan
Practitioner Perceptions of Ansible Test Smells
从业者对 Ansible 测试气味的看法
Authentic Learning Approach for Artificial Intelligence Systems Security and Privacy
人工智能系统安全和隐私的真实学习方法
  • DOI:
    10.1109/compsac57700.2023.00151
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akter, Mst Shapna;Shahriar, Hossain;Lo, Dan;Sakib, Nazmus;Qian, Kai;Whitman, Michael;Wu, Fan
  • 通讯作者:
    Wu, Fan
Security Risk and Attacks in AI: A Survey of Security and Privacy
  • DOI:
    10.1109/compsac57700.2023.00284
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md Mostafizur Rahman;Aiasha Siddika Arshi;Md. Golam Moula Mehedi Hasan;Sumayia Farzana Mishu;Hossain Shahriar-Hossain-Sh
  • 通讯作者:
    Md Mostafizur Rahman;Aiasha Siddika Arshi;Md. Golam Moula Mehedi Hasan;Sumayia Farzana Mishu;Hossain Shahriar-Hossain-Sh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Wu其他文献

A Hybrid-Element Approach to Design Wideband ME-Dipole Transmitarray with Improved Aperture Efficiency
设计具有更高孔径效率的宽带 ME 偶极子发射阵列的混合元件方法
Controllable Coating of Polypyrrole on Silicon Carbide Nanowires as a Core−Shell Nanostructure: A Facile Method To Enhance Attenuation Characteristics against Electromagnetic Radiation
以碳化硅纳米线为核壳纳米结构的可控聚吡咯涂层:一种增强电磁辐射衰减特性的简便方法
  • DOI:
    10.1021/acssuschemeng.8b04676
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Fan Wu;Mengxiao Sun;Chaoran Chen;Tian Zhou;Yilu Xia;Aming Xie;Yuanfang Shang
  • 通讯作者:
    Yuanfang Shang
Global scale life cycle environmental impacts of single- and multi-walled carbon nanotube synthesis processes
单壁和多壁碳纳米管合成过程的全球范围生命周期环境影响
Near-Five-Vector SVPWM Algorithm for Five-Phase Six-Leg Inverters under Unbalanced Load Conditions
不平衡负载条件下五相六桥臂逆变器的近五矢量SVPWM算法
  • DOI:
    10.6113/jpe.2014.14.1.61
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ping Zheng;Pengfei Wang;Yi Sui;Chengde Tong;Fan Wu;Tiecai Li
  • 通讯作者:
    Tiecai Li
Defining genetic intra-tumor heterogeneity: a chronological annotation of mutational pathways
定义肿瘤内遗传异质性:突变途径的时间顺序注释
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wentao Luo;Fan Wu;S. Atlas;G. Pickett;K. Leslie;D. Dai
  • 通讯作者:
    D. Dai

Fan Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Wu', 18)}}的其他基金

Collaborative Research: CyberCorps Scholarship for Service (Renewal): Strengthening the National Cybersecurity Workforce with Integrated Learning of AI/ML and Cybersecurity
合作研究:网络军团服务奖学金(续展):通过人工智能/机器学习和网络安全的综合学习加强国家网络安全劳动力
  • 批准号:
    2234911
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: SaTC: Building Research Capacity in AI Based Anomaly Detection in Cybersecurity
合作研究:CISE-MSI:RCBP-RF:SaTC:网络安全中基于人工智能的异常检测的研究能力建设
  • 批准号:
    2131228
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: Authentic Learning of Machine Learning in Cybersecurity with Portable Hands-on Labware
协作研究:SaTC:EDU:使用便携式动手实验室软件对网络安全中的机器学习进行真实学习
  • 批准号:
    2100134
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761735
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: SFS Program: Strengthening the National Cyber Security Workforce
合作研究:SFS 计划:加强国家网络安全劳动力
  • 批准号:
    1663350
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Secure Mobile Software Development (SMSD) Through Curriculum and Faculty Development
合作研究:通过课程和师资发展拓宽安全移动软件开发 (SMSD)
  • 批准号:
    1723586
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Partnership to Provide Technology Experiences through Aerial Drones in High Schools of the Alabama Black Belt
合作伙伴通过空中无人机为阿拉巴马州黑带高中提供技术体验
  • 批准号:
    1614845
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Project: Capacity Building in Mobile Security Through Curriculum and Faculty Development
合作项目:通过课程和师资发展进行移动安全能力建设
  • 批准号:
    1241670
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

多模态图像目标检测的模块化深度学习方法研究
  • 批准号:
    CSTB2023NSCQ-MSX0409
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于检测的多模块协同学习一体化多目标跟踪
  • 批准号:
    62372082
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放世界的模块化终生学习方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向城市交通运筹的模块化可解释强化学习
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的小型模块式压水堆跨域故障诊断方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
裂缝检测的模块化深度学习与模型压缩方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
后疫情时代智慧网络学习空间创新模块化教学研究与实践
  • 批准号:
    2021JJ60070
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于深度学习的侧信道分析方法研究
  • 批准号:
    62002353
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
机械超材料的模块化设计概念及符号回归实现
  • 批准号:
    52003203
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向港机故障诊断与预测的模块化递归联邦学习
  • 批准号:
    62073213
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342747
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315697
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315696
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342748
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315698
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315701
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342746
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了