Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices

合作研究:双曲和分形格子的拓扑动力学

基本信息

  • 批准号:
    2131759
  • 负责人:
  • 金额:
    $ 32.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

This grant will fund research that dramatically enlarges the design space for future vibration absorbing materials and structural designs, with applications to energy harvesting and acoustic panel technologies, thereby promoting the progress of science and advancing the national prosperity. The wave guiding properties of such materials depend on an underlying spatial pattern of individual oscillator elements. While the behavior associated with simple patterns that tessellate the plane using regular polygons is well understood, there is a gap in our knowledge of the ability of other classes of patterns to steer, guide, and localize waves. This project will fill this gap by discovering radically new wave-guiding physics associated with such new classes of patterns, including fractals with self-similar features at multiple scales. The experimental part of this work will uncover solutions to the problems of fabricating acoustic crystals with a desired pattern, as well as characterizing the pattern of a given crystal, opening up new research directions in materials science, acoustics, and mechanics. The project’s collaborative research ecosystem, where pure mathematics meets computational modeling and physical validation, will provide unique training opportunities for both undergraduate and graduate students, as well as for postdoctoral researchers. Outreach programs will expose middle- and high-school students and teachers to advanced topics in geometry, topology, and dynamics through dedicated and hands-on activities.This research aims to make fundamental contributions to the mathematical theory of wave-guiding metamaterials that can be characterized as hyperbolic or fractal lattices, as well as to the ability to physically realize such structures for experimental validation or design. It will achieve this outcome by formulating a theoretical framework for the classification of topological dynamics and of the possible manifestations of the bulk-boundary principle in hyperbolic and fractal lattices. The research will further demonstrate how intrinsic degrees of freedom of such lattices may be controlled to achieve new forms of wave steering, phase control, edge and bulk mode localization, and topological pumping. The experimental effort will demonstrate bioinspired packing and design solutions for large-scale fabrication of aperiodic lattices. The project will expand our knowledge about the collective dynamics of lattices, and will deliver analysis tools, mathematical models, and experimental platforms that will help chart the complex landscape of novel lattice geometries and their possible application for future material and structural designs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔拨款将资助研究,以极大地扩大未来吸振材料和结构设计的设计空间,并应用于能量收集和声学面板技术,从而促进科学进步,促进国家繁荣。这种材料的导波特性取决于单个振荡器元件的潜在空间模式。虽然与使用正多边形对平面进行镶嵌的简单模式相关的行为被很好地理解,但我们对其他类型的模式驾驭、引导和定位波浪的能力的知识还存在空白。这个项目将填补这一空白,通过发现与这类新模式相关的全新的导波物理,包括在多个尺度上具有自相似特征的分形。这项工作的实验部分将揭示制造具有所需模式的声学晶体问题的解决方案,以及表征给定晶体的模式,开辟材料科学,声学和力学的新研究方向。该项目的合作研究生态系统将纯数学与计算建模和物理验证相结合,将为本科生和研究生以及博士后研究人员提供独特的培训机会。拓展计划将通过专门的实践活动,向初高中学生和教师展示几何学、拓扑学和动力学方面的高级主题。本研究旨在为以双曲或分形晶格为特征的导波超材料的数学理论,以及为实验验证或设计物理实现这种结构的能力做出基础贡献。它将通过为拓扑动力学的分类和块边界原理在双曲和分形晶格中的可能表现形式制定一个理论框架来实现这一结果。该研究将进一步证明如何控制这些晶格的固有自由度,以实现新形式的波浪转向、相位控制、边缘和体模式局部化以及拓扑泵浦。实验成果将展示生物启发包装和设计解决方案,用于大规模制造非周期晶格。该项目将扩展我们关于晶格集体动力学的知识,并将提供分析工具、数学模型和实验平台,这些工具将有助于绘制新型晶格几何形状的复杂景观,以及它们在未来材料和结构设计中的可能应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of Majorana-like bound states in metamaterial-based Kitaev chain analogs
基于超材料的基塔耶夫链类似物中类马约拉纳束缚态的观察
  • DOI:
    10.1103/physrevresearch.5.l012012
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Qian, Kai;Apigo, David J.;Padavić, Karmela;Ahn, Keun Hyuk;Vishveshwara, Smitha;Prodan, Camelia
  • 通讯作者:
    Prodan, Camelia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Camelia Prodan其他文献

Topological Phonons in Microtubules: The Link between Local Structure and Dynamics of Microtubules
  • DOI:
    10.1016/j.bpj.2018.11.1405
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Arooj Aslam;Ssu-Ying Chen;Emil Prodan;Camelia Prodan
  • 通讯作者:
    Camelia Prodan
Relative Dielectric Permittivity And Resting Membrane Potential In Living Cells Suspensions: An Experimental Approach
  • DOI:
    10.1016/j.bpj.2008.12.3502
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Corina T. Bot;Camelia Prodan
  • 通讯作者:
    Camelia Prodan
Dynamic Instability of Microtubules: The Role of Topological Phonon Modes
  • DOI:
    10.1016/j.bpj.2010.12.2658
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Camelia Prodan;Emil V. Prodan;Sandhya Venkataraman;Enas Shehadeh
  • 通讯作者:
    Enas Shehadeh

Camelia Prodan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Camelia Prodan', 18)}}的其他基金

Collaborative Research: Topological Dynamics of Hyperbolic and Fractal Lattices
合作研究:双曲和分形格子的拓扑动力学
  • 批准号:
    2414984
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
  • 批准号:
    2304207
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 32.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了