Collaborative Research: SaTC: CORE: Medium: Towards Secure Federated Learning

协作研究:SaTC:核心:中:迈向安全的联邦学习

基本信息

  • 批准号:
    2131938
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project will provide the security foundations for the emerging paradigm of federated learning. Federated learning has seen large-scale deployment in diverse societal applications because it enables many clients (e.g., smartphones, IoT devices, and edge devices) to collaboratively learn from a machine learning model. With help of a cloud server, the process allows analysis without having to share private data. While there are already many studies on improving the accuracy and communication efficiency of federated learning, its security is much less explored. In this project, the investigators will bridge the gap by exploring new security attacks to federated learning and developing new secure federated learning methods that reduce the risk that the analyses and models can be manipulated by outside actors. This project has three objectives targeting the security of federated learning. First, the research team will systematically investigate the security vulnerabilities of federated learning. In particular, they will explore security vulnerabilities in the training phase of federated learning, such as poisoning attacks and backdoor attacks. Second, the team will develop provably secure federated learning methods to prevent poisoning attacks and backdoor attacks. Specifically, methods will be developed that ensure a bounded number of malicious clients cannot attack the machine learning model in a provably secure federated learning method no matter what poisoning and backdoor attacks they use. Third, the team of researchers will develop methods to detect malicious clients and efficiently recover a machine learning model from attacks. The investigators will aim for real-world technology transfer, incorporate the results of this project in both new and existing undergraduate and graduate courses, and develop and train undergraduate and graduate researchers with significant experience for developing secure federated learning systems, including recruiting minority and under-represented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为新兴的联邦学习范式提供安全基础。联邦学习已经在各种社会应用中得到了大规模的部署,因为它使许多客户(例如,智能手机、物联网设备和边缘设备)从机器学习模型中协作学习。在云服务器的帮助下,该过程允许分析,而无需共享私人数据。虽然已经有许多关于提高联邦学习的准确性和通信效率的研究,但其安全性却很少被探索。在这个项目中,研究人员将通过探索对联邦学习的新的安全攻击和开发新的安全联邦学习方法来弥合差距,这些方法可以降低外部参与者操纵分析和模型的风险。该项目针对联邦学习的安全性有三个目标。首先,研究团队将系统地调查联邦学习的安全漏洞。特别是,他们将探索联邦学习训练阶段的安全漏洞,例如中毒攻击和后门攻击。其次,该团队将开发可证明安全的联邦学习方法,以防止中毒攻击和后门攻击。具体来说,将开发方法,确保有限数量的恶意客户端无法在可证明安全的联邦学习方法中攻击机器学习模型,无论他们使用什么中毒和后门攻击。 第三,研究人员团队将开发检测恶意客户端并有效地从攻击中恢复机器学习模型的方法。研究人员将致力于现实世界的技术转让,将该项目的成果纳入新的和现有的本科生和研究生课程,并培养和培训具有开发安全联邦学习系统丰富经验的本科生和研究生研究人员,包括招募少数族裔和该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查评估的支持的搜索.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EFFECTIVELY USING PUBLIC DATA IN PRIVACY PRE - SERVING M ACHINE LEARNING
在隐私保护中有效使用公共数据 - 服务机器学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Preeti;Irfan Khan
  • 通讯作者:
    Irfan Khan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prateek Mittal其他文献

Cracking ShadowCrypt: Exploring the Limitations of Secure I/O Systems in Internet Browsers
破解 ShadowCrypt:探索互联网浏览器中安全 I/O 系统的局限性
  • DOI:
    10.1515/popets-2018-0012
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Freyberger;Warren He;Devdatta Akhawe;Michelle L. Mazurek;Prateek Mittal
  • 通讯作者:
    Prateek Mittal
Aggregated Demand Increase Line Overload Transmission Network Distribution Network Remotely Turning ON / OFF Devices Automatic Generation Increase
总需求增加 线路过载 输电网络 配电网络 远程打开/关闭设备 自动发电增加
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saleh Soltan;Prateek Mittal;H. Vincent
  • 通讯作者:
    H. Vincent
Efficient Data Shapley for Weighted Nearest Neighbor Algorithms
用于加权最近邻算法的高效数据 Shapley
  • DOI:
    10.48550/arxiv.2401.11103
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiachen T. Wang;Prateek Mittal;Ruoxi Jia
  • 通讯作者:
    Ruoxi Jia
WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers Against Adversarial Patches
WIP:针对多标签分类器针对对抗性补丁提供可证明的稳健防御
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dennis G. Jacob;Chong Xiang;Prateek Mittal
  • 通讯作者:
    Prateek Mittal
Protecting the Grid against IoT Botnets of High-Wattage Devices
保护电网免受高功率设备的物联网僵尸网络的侵害
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saleh Soltan;Prateek Mittal;H. Poor
  • 通讯作者:
    H. Poor

Prateek Mittal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prateek Mittal', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: A Linguistically-Informed Approach for Measuring and Circumventing Internet Censorship
SaTC:核心:媒介:协作:衡量和规避互联网审查的语言知情方法
  • 批准号:
    1704105
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Trustworthy Social Systems Using Network Science
职业:使用网络科学的值得信赖的社会系统
  • 批准号:
    1553437
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Analytics on Edge-labeled Hypergraphs: Limits to De-anonymization
CIF:小型:协作研究:边缘标记超图分析:去匿名化的限制
  • 批准号:
    1617286
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Small: Collaborative: Advancing Anonymity Against an AS-level Adversary
TWC:小型:协作:针对 AS 级对手推进匿名性
  • 批准号:
    1423139
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Aspire: Leveraging Automated Synthesis Technologies for Enhancing System Security
TWC:媒介:协作:Aspire:利用自动合成技术增强系统安全性
  • 批准号:
    1409415
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了