CAREER: Trustworthy Social Systems Using Network Science

职业:使用网络科学的值得信赖的社会系统

基本信息

  • 批准号:
    1553437
  • 负责人:
  • 金额:
    $ 52.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Social media systems have transformed our societal communications, including news discovery, recommendations, societal interactions, E-commerce, as well as political and governance activities. However, the rising popularity of social media systems has brought concerns about security and privacy to the forefront. This project aims to design trustworthy social systems by building on the discipline of network science. First, the project is developing techniques for analysis of social media data that protect against risks to individual privacy; new research is needed since existing approaches are unable to provide rigorous privacy guarantees. Second, the project is developing new approaches to mitigate the threat of "fake accounts" in social systems, in spite of attempts by the creators of those accounts to elude detection. Both deployed and academic approaches remain vulnerable to strategic adversaries, motivating the development of novel defense mechanisms based on network science. The findings and new designs from this research will directly impact the security and privacy of a broad class of social network users.The private network analytics thrust builds on the ideas of differential privacy, ensuring sufficient uncertainty in results to hide individual relationships. The project introduces dependent differential privacy, which protects against disclosure of information associated with an individual, as well as mutual information privacy, an entropy-based measure. The Sybil mitigation thrust is based on the idea of adversarial machine learning: the creators of fake accounts are presumed to adapt their mechanisms to changing detection approaches. This work exploits new features, such as temporal dynamics of the network, to address this problem. Finally, the project aims to integrate the research with an educational initiative for developing pedagogical approaches and content for trustworthy social systems.
社交媒体系统已经改变了我们的社会交流,包括新闻发现、推荐、社会互动、电子商务以及政治和治理活动。然而,社交媒体系统的日益普及已经把对安全和隐私的担忧带到了最前沿。本项目旨在以网络科学学科为基础,设计可信赖的社会系统。首先,该项目正在开发分析社交媒体数据的技术,以防止个人隐私受到威胁;由于现有的方法无法提供严格的隐私保障,因此需要进行新的研究。其次,该项目正在开发新方法,以减轻社交系统中“虚假账户”的威胁,尽管这些账户的创建者试图逃避检测。部署的和学术的方法仍然容易受到战略对手的攻击,这推动了基于网络科学的新型防御机制的发展。这项研究的发现和新设计将直接影响广大社交网络用户的安全和隐私。私人网络分析的推动力建立在差异隐私的理念之上,确保结果有足够的不确定性,从而隐藏个人关系。该项目引入了依赖差异隐私,它可以防止与个人相关的信息泄露,以及基于熵的相互信息隐私。Sybil的缓解推力基于对抗性机器学习的思想:假设虚假账户的创建者会调整其机制以适应不断变化的检测方法。这项工作利用新的特征,如网络的时间动态,来解决这个问题。最后,该项目旨在将研究与教育倡议相结合,为可信赖的社会系统开发教学方法和内容。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SICO: Surgical Interception Attacks by Manipulating BGP Communities
SICO:通过操纵 BGP 社区进行外科手术式拦截攻击
Watching You Watch: The Tracking Ecosystem of Over-the-Top TV Streaming Devices
看你看:顶级电视流媒体设备的跟踪生态系统
  • DOI:
    10.1145/3319535.3354198
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohajeri Moghaddam, Hooman;Acar, Gunes;Burgess, Ben;Mathur, Arunesh;Huang, Danny Yuxing;Feamster, Nick;Felten, Edward W.;Mittal, Prateek;Narayanan, Arvind
  • 通讯作者:
    Narayanan, Arvind
Website Fingerprinting Through the Cache Occupancy Channel and its Real World Practicality
  • DOI:
    10.1109/tdsc.2020.2988369
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    A. Shusterman;Zohar Avraham;Eliezer Croitoru;Yarden Haskal;Lachlan Kang;Dvir Levi;Yosef Meltser;Prateek Mittal;Yossi Oren;Y. Yarom
  • 通讯作者:
    A. Shusterman;Zohar Avraham;Eliezer Croitoru;Yarden Haskal;Lachlan Kang;Dvir Levi;Yosef Meltser;Prateek Mittal;Yossi Oren;Y. Yarom
Experiences Deploying Multi-Vantage-Point Domain Validation at Let’s Encrypt
在 Let’s Encrypt 部署多优势点域验证的经验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prateek Mittal其他文献

Cracking ShadowCrypt: Exploring the Limitations of Secure I/O Systems in Internet Browsers
破解 ShadowCrypt:探索互联网浏览器中安全 I/O 系统的局限性
  • DOI:
    10.1515/popets-2018-0012
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Freyberger;Warren He;Devdatta Akhawe;Michelle L. Mazurek;Prateek Mittal
  • 通讯作者:
    Prateek Mittal
Aggregated Demand Increase Line Overload Transmission Network Distribution Network Remotely Turning ON / OFF Devices Automatic Generation Increase
总需求增加 线路过载 输电网络 配电网络 远程打开/关闭设备 自动发电增加
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saleh Soltan;Prateek Mittal;H. Vincent
  • 通讯作者:
    H. Vincent
Efficient Data Shapley for Weighted Nearest Neighbor Algorithms
用于加权最近邻算法的高效数据 Shapley
  • DOI:
    10.48550/arxiv.2401.11103
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiachen T. Wang;Prateek Mittal;Ruoxi Jia
  • 通讯作者:
    Ruoxi Jia
WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers Against Adversarial Patches
WIP:针对多标签分类器针对对抗性补丁提供可证明的稳健防御
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dennis G. Jacob;Chong Xiang;Prateek Mittal
  • 通讯作者:
    Prateek Mittal
Protecting the Grid against IoT Botnets of High-Wattage Devices
保护电网免受高功率设备的物联网僵尸网络的侵害
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saleh Soltan;Prateek Mittal;H. Poor
  • 通讯作者:
    H. Poor

Prateek Mittal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prateek Mittal', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Towards Secure Federated Learning
协作研究:SaTC:核心:中:迈向安全的联邦学习
  • 批准号:
    2131938
  • 财政年份:
    2022
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Standard Grant
SaTC: CORE: Medium: Collaborative: A Linguistically-Informed Approach for Measuring and Circumventing Internet Censorship
SaTC:核心:媒介:协作:衡量和规避互联网审查的语言知情方法
  • 批准号:
    1704105
  • 财政年份:
    2017
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Analytics on Edge-labeled Hypergraphs: Limits to De-anonymization
CIF:小型:协作研究:边缘标记超图分析:去匿名化的限制
  • 批准号:
    1617286
  • 财政年份:
    2016
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Standard Grant
TWC: Small: Collaborative: Advancing Anonymity Against an AS-level Adversary
TWC:小型:协作:针对 AS 级对手推进匿名性
  • 批准号:
    1423139
  • 财政年份:
    2014
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Aspire: Leveraging Automated Synthesis Technologies for Enhancing System Security
TWC:媒介:协作:Aspire:利用自动合成技术增强系统安全性
  • 批准号:
    1409415
  • 财政年份:
    2014
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Standard Grant

相似海外基金

KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
  • 批准号:
    EP/Y015894/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Fellowship
Innovative RegTech SaaS that automates ESG audits to produce trustworthy environmental and social impact data and increase the overall value of ESG for UK SMEs
创新的 RegTech SaaS,可自动执行 ESG 审计,生成值得信赖的环境和社会影响数据,并提高英国中小企业 ESG 的整体价值
  • 批准号:
    10035613
  • 财政年份:
    2022
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Collaborative R&D
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
  • 批准号:
    RGPIN-2017-04032
  • 财政年份:
    2022
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
  • 批准号:
    RGPIN-2017-04032
  • 财政年份:
    2021
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
  • 批准号:
    RGPIN-2017-04032
  • 财政年份:
    2020
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
  • 批准号:
    RGPIN-2017-04032
  • 财政年份:
    2019
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
  • 批准号:
    RGPIN-2017-04032
  • 财政年份:
    2018
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
  • 批准号:
    RGPIN-2017-04032
  • 财政年份:
    2017
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: CHS: Sharing Over Direct and Extended Social Networks - Towards A Trustworthy and Efficient Sharing Economy
CRII:CHS:通过直接和扩展社交网络进行共享 - 迈向值得信赖和高效的共享经济
  • 批准号:
    1566149
  • 财政年份:
    2016
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Energy Efficient Participatory Data Collection Schemes and Context-Aware Incentives for Trustworthy Crowdsensing via Mobile Social Networks
CRII:SaTC:节能参与式数据收集方案和通过移动社交网络进行可信群体感知的情境感知激励
  • 批准号:
    1464273
  • 财政年份:
    2015
  • 资助金额:
    $ 52.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了