EFRI DCheM: Distributed Photosynthetic Recovery of Livestock Waste Nutrients for Sustainable Production of Fertilizers
EFRI DCheM:畜牧废物养分的分布式光合回收用于肥料的可持续生产
基本信息
- 批准号:2132036
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dairy farming in the U.S. is a multi-billion-dollar industry that provides essential food products. At the same time, the millions of animals that this industry oversees generate a massive environmental footprint affecting air, land, and water quality. Specifically, livestock manure is a carbon- and nutrient-rich (in nitrogen and phosphorus compounds) waste stream that is routinely used as fertilizer. This practice enables nutrient recycling but also leads to emissions of potent greenhouse gases such as methane and nitrous oxide, and to nutrient accumulation in soils due to manure nutrients often being imbalanced with respect to crop needs. Nutrient accumulation in turn promotes runoff to surface and groundwaters and leads to eutrophication and algae blooms that impact property values, recreation, and tourism. Recovering manure nutrients in a scalable manner remains a grand societal challenge; the main difficulty is that manure is a vast, diluted, and distributed waste stream. To give some perspective, there are 1.2 million dairy cows in Wisconsin distributed across 9,000 dairy farms; a total of 24 million tons of manure are generated in the state annually and this waste stream contains 32,000 tons of phosphorous. This project will seek to develop low-cost, modular, and flexible manure processing technologies to tackle this challenge. These processes will capture nutrients from manure using photosynthetic microorganisms (cyanobacteria) that will be engineered using synthetic biology techniques to tailor their performance for this application. We will combine experiments, computational models, and machine learning techniques to investigate the potential of using the cyanobacteria as sustainable biofertilizers that can help reduce the use of synthetic fertilizers and mitigate nutrient pollution of waterbodies. The processes that we envision provide a step towards more sustainable farming and can potentially activate a bioeconomy that helps farmers access new technologies and revenue sources. This project also provides exciting opportunities to engage K-12, undergraduate, and graduate students in STEM fields.The overall goal of this project is to develop photosynthetic processes for on-farm biofertilizer production from manure using cyanobacteria (CB). These multi-functional processes aim to: (i) produce a range of valuable biofertilizers in the form of wet/dry CB biomass and of nutrient-balanced CB-manure blends, (ii) recover manure nutrients for redistribution, and (iii) enable sustainable management of water, carbon, and energy in biofertilizer production. These objectives will be achieved via integration of modular bag photobioreactors with manure anaerobic digestion units, biogas purification systems, CB biomass separation units, and power generators. The enablers of this integration will be engineered CB strains that: (i) maximize nutrient recovery from manure, (ii) facilitate crop nutrient uptake, (iii) maximize biogas production from manure, and (iv) facilitate biogas purification. CB culture, co-digestion, and soil experiments will be guided using machine learning algorithms; these algorithms will aim to strategically collect data to create and refine process models. We will use our models to conduct techno-economic and life-cycle studies and to assess infrastructure-level benefits that result from the deployment of our processes (e.g., geographical nutrient balancing). Likewise, the techno-economic modeling work will be used to compare the economic costs of current nitrogen and phosphorous containment strategies to the costs associated with potential risks of releasing the engineered CB to the environment. We have assembled a multi-disciplinary team at UW-Madison with expertise in systems engineering, synthetic biology, agricultural sustainability, and soil science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,奶牛业是一个价值数十亿美元的行业,提供必要的食品。与此同时,该行业监管的数百万动物产生了巨大的环境足迹,影响了空气、土地和水质。具体地说,牲畜粪便是一种碳和营养丰富的(氮和磷化合物)废物流,通常被用作肥料。这种做法能够实现养分循环,但也会导致甲烷和一氧化二氮等强有力的温室气体的排放,并由于粪便养分往往与作物需求不平衡而导致土壤中的养分积累。营养物质的积累反过来又促进径流进入地表水和地下水,并导致富营养化和藻类大量繁殖,从而影响房地产价值、娱乐和旅游业。以可扩展的方式回收粪便养分仍然是一个巨大的社会挑战;主要困难是粪便是一种巨大的、稀释的和分散的废物流。从一些角度来看,威斯康星州有120万头奶牛,分布在9000个奶牛场;该州每年总共产生2400万吨粪便,这些废物流中含有3.2万吨磷。该项目将寻求开发低成本、模块化和灵活的粪便处理技术来应对这一挑战。这些过程将使用光合作用微生物(蓝藻)从粪便中获取营养,这些微生物将使用合成生物学技术进行工程设计,以适应这一应用的性能。我们将结合实验、计算模型和机器学习技术,研究将蓝藻用作可持续生物肥料的潜力,以帮助减少合成肥料的使用,减轻水体的营养污染。我们设想的进程是朝着更可持续的农业迈出的一步,并有可能激活生物经济,帮助农民获得新技术和收入来源。这个项目还提供了激动人心的机会,让K-12、本科生和研究生参与到STEM领域。这个项目的总体目标是开发利用蓝藻(CB)从粪便中生产农场生物肥料的光合作用过程。这些多功能过程的目的是:(I)生产一系列有价值的生物肥料,其形式为湿/干CB生物质和营养平衡的CB-粪便混合物,(Ii)回收粪便养分用于再分配,以及(Iii)在生物肥料生产中实现水、碳和能源的可持续管理。这些目标将通过将模块化袋式光生物反应器与粪便厌氧消化装置、沼气净化系统、CB生物质分离装置和发电机相结合来实现。这种整合的推动者将是经过改造的CB菌株:(I)最大限度地从粪便中回收养分,(Ii)促进作物养分的吸收,(Iii)最大限度地从粪便中产生沼气,以及(Iv)促进沼气净化。CB培养、共消化和土壤实验将使用机器学习算法进行指导;这些算法旨在战略性地收集数据,以创建和改进过程模型。我们将使用我们的模型进行技术经济和生命周期研究,并评估部署我们的流程产生的基础设施层面的好处(例如,地理养分平衡)。同样,技术经济建模工作将被用来比较当前氮磷遏制战略的经济成本与将工程碳黑释放到环境中的潜在风险相关的成本。我们在威斯康星大学麦迪逊分校组建了一个多学科团队,拥有系统工程、合成生物学、农业可持续性和土壤科学方面的专业知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Zavala Tejeda其他文献
Victor Zavala Tejeda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Zavala Tejeda', 18)}}的其他基金
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: OPTIMIZATION FORMULATIONS AND ALGORITHMS FOR THE ANALYSIS AND DESIGN OF HIERARCHICAL MODULAR SYSTEMS
职业:分层模块化系统分析和设计的优化公式和算法
- 批准号:
1748516 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid-Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
- 批准号:
1837812 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CRISP 2.0 Type 2: Collaborative Research: Exploiting Interdependencies Between Computing and Electrical Power Infrastructures to Maximize Resilience and Flexibility
CRISP 2.0 类型 2:协作研究:利用计算和电力基础设施之间的相互依赖性来最大限度地提高弹性和灵活性
- 批准号:
1832208 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Multi-Stakeholder Decision-Making for the Development of Livestock Waste-to-Biogas Systems
畜牧废物转化沼气系统发展的多方利益相关者决策
- 批准号:
1604374 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Multi-Scale Predictive Control of Coupled Energy Networks
耦合能源网络的多尺度预测控制
- 批准号:
1609183 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI DCheM: Making Cement Green by Low-Temperature Manufacturing of Calcium Hydroxide from Distributed Waste Sources
EFRI DCheM:通过从分布式废物源中低温制造氢氧化钙,使水泥变得绿色
- 批准号:
2132022 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed solar energy harvesting for carbon-free ammonia synthesis
EFRI DCheM:用于无碳氨合成的分布式太阳能收集
- 批准号:
2131709 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Chemicals from Renewables Through Green Electrochemistry (ChaRGE)
EFRI DCheM:通过绿色电化学从可再生能源中生产化学品 (ChaRGE)
- 批准号:
2132200 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Re-Engineering the Nitrogen Cycle: Distributed Electrochemical Nitrogen Refineries for Ammonia Synthesis and Water Purification
EFRI DCheM:重新设计氮循环:用于氨合成和水净化的分布式电化学氮精炼厂
- 批准号:
2132007 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
- 批准号:
2132141 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Manufacturing of Personalized Medicines
EFRI DCheM:个性化药品的分布式制造
- 批准号:
2029139 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Digital design of a network of distributed modular and agile manufacturing systems with optimal supply chain for personalized medical treatments
EFRI DCheM:分布式模块化和敏捷制造系统网络的数字化设计,具有个性化医疗的最佳供应链
- 批准号:
2132142 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Renewable Energy Driven Electrocatalytic Co-Conversion of CO2 and Regional Feedstocks to Chemicals and Fuels
EFRI DCheM:可再生能源驱动的二氧化碳和区域原料电催化共转化为化学品和燃料
- 批准号:
2029326 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: One-step conversion of CH4 and CO2 to liquid fuels with the use of a multi-functional pseudo catalytic system
EFRI DCheM:使用多功能伪催化系统将 CH4 和 CO2 一步转化为液体燃料
- 批准号:
2029282 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Precise but Tunable Reactions Through Tunably Precise Surfaces
EFRI DCheM:通过可调节精确表面实现精确但可调节的反应
- 批准号:
2029359 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant