Multi-Scale Predictive Control of Coupled Energy Networks

耦合能源网络的多尺度预测控制

基本信息

  • 批准号:
    1609183
  • 负责人:
  • 金额:
    $ 32.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Infrastructure networks (electrical, natural gas, water, transportation) have evolved into massive and highly sophisticated engineering systems. The U.S. electrical transmission network comprises 30,000 transmission lines that span 450,000 miles and that are connected to 55,000 substations. The gas transmission network consists of 210 pipelines that span 305,000 miles and comprise 1,400 compressor stations and over 11,000 delivery gates. Each substation and delivery gate is connected to a vast distribution (utility) network that takes resources to buildings, homes, and industrial facilities. Water and transportation networks have similar arrangements and complexity. Infrastructure networks present drastically different time scales and layouts that make them notoriously difficult to synchronize. For instance, electricity flows throughout the power grid nearly instantaneously while natural gas flows in pipelines at 30-50 miles per hour. The difficulty in achieving synchronization became evident during the so-called Polar Vortex of 2014 in which record low temperatures experienced in the Midwest region of the U.S. triggered cascading shortages of natural gas and electricity that affected the entire country. This project seeks to develop new control architectures that can effectively synchronize infrastructure networks by managing space and time scales in a systematic manner. The control architectures will enable more effective mitigation of extreme weather and man-made events as well as a more efficient distribution of resources. The research team will pursue the project goals by developing a new transformative control paradigm -referred to by the investigators as multi-scale model predictive control (msMPC). The msMPC formulation will enable the systematic design of hierarchical control architectures capable of handling heterogenous energy networks covering vast and disparate spatial and temporal scales. The key idea behind msMPC is to create a control hierarchy in which a top level coordinating controller computes control actions using highly coarse but tractable space-time representations of the entire system. The coarse control actions are then communicated and progressively refined at the lower levels. At the lowest level is a set of decentralized control agents each operating on a portion of the time-space domain. Each agent rejects local and high-frequency disturbances, while remaining coordinated with other agents through capturing global information obtained from the coarser levels. In other words, msMPC is a paradigm that seeks to bridge the gap between fully centralized and fully decentralized control. The project also aims at developing a stability theory for msMPC hierarchies and performing studies to identify more effective infrastructure arrangements (e.g., hub-based as opposed to resource-based). The interdisciplinary nature of the work will provide a unique training environment for graduate students that combines control and economic theory, systems modeling, optimization algorithms, and high-performance computing.
基础设施网络(电力、天然气、水、交通)已经发展成为庞大而高度复杂的工程系统。美国的电力传输网络由3万条输电线路组成,总长45万英里,与5.5万个变电站相连。天然气输送网络由210条管道组成,跨越305,000英里,包括1,400个压缩站和11,000多个输送门。每个变电站和输送门都连接到一个庞大的分配(公用事业)网络,该网络将资源输送到建筑物、家庭和工业设施。水网和交通网有着相似的安排和复杂性。基础设施网络呈现出截然不同的时间尺度和布局,这使得它们难以同步。例如,电力几乎是瞬间在整个电网中流动,而天然气以每小时30-50英里的速度在管道中流动。在2014年所谓的极地涡旋期间,实现同步的困难变得明显,当时美国中西部地区经历了创纪录的低温,引发了天然气和电力的连锁短缺,影响了整个国家。该项目旨在开发新的控制体系结构,通过系统地管理空间和时间尺度,有效地同步基础设施网络。控制架构将能够更有效地缓解极端天气和人为事件,并更有效地分配资源。研究小组将通过开发一种新的变革性控制范式来实现项目目标,研究人员将其称为多尺度模型预测控制(msMPC)。msMPC方案将使分层控制体系结构的系统设计能够处理覆盖巨大和不同空间和时间尺度的异质能源网络。msMPC背后的关键思想是创建一个控制层次结构,其中顶层协调控制器使用整个系统的高度粗糙但易于处理的时空表示来计算控制动作。然后在较低的层次上沟通并逐步细化粗控制动作。在最底层是一组分散的控制代理,每个代理在时间-空间域的一部分上操作。每个代理拒绝局部和高频干扰,同时通过捕获从粗层次获得的全局信息保持与其他代理的协调。换句话说,msMPC是一种范例,旨在弥合完全集中控制和完全分散控制之间的差距。该项目还旨在发展msMPC层次结构的稳定性理论,并进行研究以确定更有效的基础设施安排(例如,以枢纽为基础而不是以资源为基础)。这项工作的跨学科性质将为研究生提供一个独特的训练环境,结合控制和经济理论、系统建模、优化算法和高性能计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Zavala Tejeda其他文献

Victor Zavala Tejeda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Zavala Tejeda', 18)}}的其他基金

FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
  • 批准号:
    2328160
  • 财政年份:
    2023
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
  • 批准号:
    2315963
  • 财政年份:
    2023
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed Photosynthetic Recovery of Livestock Waste Nutrients for Sustainable Production of Fertilizers
EFRI DCheM:畜牧废物养分的分布式光合回收用于肥料的可持续生产
  • 批准号:
    2132036
  • 财政年份:
    2021
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
CAREER: OPTIMIZATION FORMULATIONS AND ALGORITHMS FOR THE ANALYSIS AND DESIGN OF HIERARCHICAL MODULAR SYSTEMS
职业:分层模块化系统分析和设计的优化公式和算法
  • 批准号:
    1748516
  • 财政年份:
    2018
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid-Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
  • 批准号:
    1837812
  • 财政年份:
    2018
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
CRISP 2.0 Type 2: Collaborative Research: Exploiting Interdependencies Between Computing and Electrical Power Infrastructures to Maximize Resilience and Flexibility
CRISP 2.0 类型 2:协作研究:利用计算和电力基础设施之间的相互依赖性来最大限度地提高弹性和灵活性
  • 批准号:
    1832208
  • 财政年份:
    2018
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Multi-Stakeholder Decision-Making for the Development of Livestock Waste-to-Biogas Systems
畜牧废物转化沼气系统发展的多方利益相关者决策
  • 批准号:
    1604374
  • 财政年份:
    2016
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
  • 批准号:
    10798520
  • 财政年份:
    2023
  • 资助金额:
    $ 32.86万
  • 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
  • 批准号:
    10562825
  • 财政年份:
    2023
  • 资助金额:
    $ 32.86万
  • 项目类别:
Harnessing the Data Revolution to Enable Predictive Multi-scale Modeling across STEM
利用数据革命实现跨 STEM 的预测性多尺度建模
  • 批准号:
    2152014
  • 财政年份:
    2022
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
EAR-PF: Resolving the multi-scale hydraulics of shallow overland flows on patchily-vegetated hillslopes: towards a simple predictive framework
EAR-PF:解决植被斑驳的山坡上浅层陆流的多尺度水力学问题:建立一个简单的预测框架
  • 批准号:
    1952651
  • 财政年份:
    2020
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Fellowship Award
Frontera Travel Grant: Enhanced Atomistic Simulations for Predictive Multi-Scale Modeling Safety Pharmacology Pipeline
Frontera 旅行补助金:用于预测多尺度建模安全药理学管道的增强原子模拟
  • 批准号:
    2032486
  • 财政年份:
    2020
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
Integrating Multi-Scale Imaging, Reaction-Diffusion Simulation, and Markov Model Inference to Enhance Predictive Design and Interpretation of Single-Molecule Gene Regulation Experiments
集成多尺度成像、反应扩散模拟和马尔可夫模型推理,增强单分子基因调控实验的预测设计和解释
  • 批准号:
    10406604
  • 财政年份:
    2017
  • 资助金额:
    $ 32.86万
  • 项目类别:
Integrating Multi-Scale Imaging, Reaction-Diffusion Simulation, and Markov Model Inference to Enhance Predictive Design and Interpretation of Single-Molecule Gene Regulation Experiments
集成多尺度成像、反应扩散模拟和马尔可夫模型推理,增强单分子基因调控实验的预测设计和解释
  • 批准号:
    10704524
  • 财政年份:
    2017
  • 资助金额:
    $ 32.86万
  • 项目类别:
A predictive multi-scale model of the immune system: An integrated computational resource for interdisciplinary applications.
免疫系统的预测性多尺度模型:跨学科应用的集成计算资源。
  • 批准号:
    9142820
  • 财政年份:
    2016
  • 资助金额:
    $ 32.86万
  • 项目类别:
UK - China Initiative to Develop Predictive Multi-Scale Ocean Modelling as a Key Aspect of a Joint Environmental Modelling Centre
中英倡议开发多尺度海洋预测模型作为联合环境模型中心的关键部分
  • 批准号:
    NE/J015938/1
  • 财政年份:
    2012
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Research Grant
Predictive Multi-scale Modeling of Shape-Selective Adsorption and Reaction in Acid/Base Zeolite Biofuel Catalysts
酸/碱沸石生物燃料催化剂中形状选择吸附和反应的预测多尺度建模
  • 批准号:
    0932777
  • 财政年份:
    2009
  • 资助金额:
    $ 32.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了