The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program

朗兰兹纲领中的迹公式法与模簇的算术和几何

基本信息

  • 批准号:
    2132670
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Number theory is one of the oldest branches of mathematics. It studies properties of the integers. The impact of research in number theory on modern science and technology is significant. Most notably, number theory has proved indispensable in cryptography, internet security, telecommunication, and so on. This is a project to study the so-called Langlands program, which predicts deep relations between number theory and other seemingly unrelated branches of mathematics. Progress in the Langlands program will not only advance our knowledge in number theory, but also demonstrate the unification of mathematics, showing that seemingly different areas in mathematics are governed by certain common principles. This will be beneficial for enhancing communication and collaboration between researchers working in different branches of mathematics and will have potential applications to cryptography, internet security, telecommunication, and so on, as mentioned above.In more detail, a central topic in the Langlands program is the reciprocity between motives and automorphic forms. One of the most important tools is the trace formula. In the context of automorphic forms, there are trace formulas of Arthur-Selberg type and the so-called relative trace formulas. In the context of algebraic geometry, there are trace formulas of Grothendieck-Lefschetz-Verdier type. The investigator studies these trace formulas in conjunction with various geometric objects that naturally arise in the Langlands program. These geometric objects, which include Shimura varieties, moduli spaces of shtukas, Rapoport-Zink spaces, affine Deligne-Lusztig varieties, etc., are themselves moduli spaces of certain geometric structures. The goal of this project is to describe, in various concrete settings, the interaction between trace formulas and the arithmetic and geometry of these moduli spaces. Such an understanding will lead to results on the relation between motives and automorphic forms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是数学最古老的分支之一。它研究整数的性质。数论研究对现代科学技术的影响是巨大的。最值得注意的是,数论已被证明在密码学、互联网安全、电信等领域不可或缺。这是一个研究所谓朗兰兹程序的项目,它预测了数论和其他看似无关的数学分支之间的深层关系。朗兰兹纲领的进展不仅将提高我们在数论方面的知识,而且还将证明数学的统一性,表明数学中看似不同的领域受到某些共同原则的支配。这将有利于加强在不同数学分支工作的研究人员之间的交流和合作,并将在密码学,互联网安全,电信等领域具有潜在的应用,如前所述。更详细地说,朗兰兹纲领的一个中心主题是动机和自同构形式之间的相互关系。最重要的工具之一是迹公式。在自同态形式中,有Arthur-Selberg型的迹公式和所谓的相对迹公式。在代数几何的背景下,存在Grothendieck-Lefschetz-Verdier型的迹公式。研究者将这些迹公式与朗兰兹程序中自然产生的各种几何对象结合起来研究。这些几何对象包括Shimura变体、shtukas的模空间、Rapoport-Zink空间、仿射delign - lusztig变体等,它们本身就是某些几何结构的模空间。这个项目的目标是描述,在各种具体设置中,迹公式与这些模空间的算术和几何之间的相互作用。这样的理解将导致动机和自同构形式之间关系的结果。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yihang ZHU其他文献

Yihang ZHU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yihang ZHU', 18)}}的其他基金

The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
  • 批准号:
    1802292
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似海外基金

Should infant formula be available at UK food banks? Evaluating different pathways to ensuring parents in financial crisis can access infant formula.
英国食品银行应该提供婴儿配方奶粉吗?
  • 批准号:
    MR/Z503575/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Infant formula: Alternative protein study and regulatory roadmap
婴儿配方奶粉:替代蛋白质研究和监管路线图
  • 批准号:
    10108649
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Collaborative R&D
Assessment of Early Life PFAS Exposure in Perinatal Biospecimens, Infant Formula, and Breastmilk.
围产期生物样本、婴儿配方奶粉和母乳中生命早期 PFAS 暴露的评估。
  • 批准号:
    10723660
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
Analogues of the Weierstrass representation formula and extension problem of submanifolds at their singularities
Weierstrass 表示公式的类似物和奇点处子流形的可拓问题
  • 批准号:
    22H01121
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Thermal Contact Resistance Prediction Formula Considering Details of Heat Transport Phenomena in Solid-Solid Contact Surface
考虑固-固接触表面传热现象细节的热接触热阻预测公式的开发
  • 批准号:
    22K03949
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Verbatim Formula: Sometimes a Hug Goes a Long Way
逐字公式:有时一个拥抱会带来很大的帮助
  • 批准号:
    AH/V008579/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Research Grant
Construction of salt permeation prediction formula for concrete structures with continuous or repetitive compressive stress
连续或重复压应力混凝土结构盐渗透预测公式的构建
  • 批准号:
    22K04290
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
  • 批准号:
    RGPIN-2020-04547
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Class number formula over global field of characteristic p and with coefficients.
特征 p 和系数的全局域上的类数公式。
  • 批准号:
    21K03186
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了