EAGER:SUPER: In-situ Synthesis of a New Functional Material: Superconducting Polyacetylene
EAGER:SUPER:原位合成新型功能材料:超导聚乙炔
基本信息
- 批准号:2132696
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical SummaryImagine a world with infinitely rechargeable batteries that are very light, store electrical energy without losses, power lines that lose no power, and portable medical imaging scanners — these are a few of the transformative applications that could be realized by the development of room-temperature (RT), ambient pressure superconductors (materials that transport electricity without resistance). Theory predicts that linear molecular conductors, like polyacetylene (PA), whose chains of carbon atoms are connected by alternating double and single bonds, might be one such superconducting material. In the laboratory, PA is anything but linear when synthesized, becoming highly disordered (like a spaghetti) and prone to reacting with itself or neighboring molecules. Just as a winding road slows traffic, what starts as a straight PA chain can twist to produce bent and twisted geometries that significantly affect its conductivity — this factor alone is a major experimental bottleneck in achieving RT superconductivity in this and other potential organic conducting polymers. With this project, supported by Division of Materials Research, Professor Michael Sponsler and his research group at Syracuse University will focus on preparing a completely new form of PA with separated and highly ordered single chains isolated in long, straight tunnels. To achieve a linear geometry capable of exhibiting potential RT superconductivity, the PA chains will be synthesized within the tunnels of honeycomb-like urea crystals, then studied to confirm their geometries and electrical behavior. If successful, the project will produce structurally ordered PA for the first time, result in a novel organic material that will have a significant impact on the theory and application of conducting polymers, and reveal the RT, ambient pressure superconductivity state, a long-standing elusive goal. Moreover, integrating a large arsenal of experimental efforts to characterize these chains and their behavior will serve to educate new chemists from undergraduate to post-doctoral levels, including women and underrepresented minorities in these interdisciplinary research projects.Technical SummaryPolyacetylene (PA), the simplest conjugated polymer, is thought of as a long, straight-chain semiconductor exhibiting bond-length alternation (BLA). Based on foundational calculations predicting that PA chains cannot have BLA because the vibrational zero-point energy is above the Peierls barrier, the premise of the proposed study is that an individual, isolated chain of PA in its fully extended all-trans conformation will have a half-filled band electronic structure and thus will be a one-dimensional (1D) metallic polymer without doping. Further, the vibrational frequency of the carbon-carbon (C-C) bond alternation mode (1455 1/cm) associated with the 1D conductivity is ~7 times higher than thermal energy at room temperature (RT), precluding thermal excitation as a mechanism of electron scattering. Since there is no mechanism for resistance to the electron motion, high-temperature superconductivity in PA is a real possibility. This project, supported by the Division of Materials Research, will test the hypothesis that individual PA chains of sufficient length and isolation will show superconductivity by (1) synthesizing ordered, fully extended PA chains by encasing the polymer chains into structures with nanometer-sized diameters – the parallel tunnels of a urea inclusion crystal; and (2) characterizing the structural and electronic properties of the long chains produced to demonstrate that they show no BLA and have no measurable electrical resistance to DC currents, showing that PA acts as an RT, ambient pressure superconductor. The PA/urea inclusion crystals will be made from urea and a photoreactive precursor molecule, (E,E,E)-1,6-diiodohexatriene (DIHT), through a new light-induced process called elimination-condensation inclusion polymerization. This unique approach employs photochemical bond scission of terminal carbon-iodine (C-I) bonds from a DIHT molecule with the formation of new C-C bonds and elimination of iodine from the tunnels of the urea host crystal. The photochemical process continues until all iodine has left the crystal and high molecular weight and fully-conjugated PA chains are made within the crystalline urea tunnels. The photochemical conversion of included DIHT to PA will be monitored by mass-loss measurements to track the stoichiometric amounts of iodine lost from the initial crystal and by Raman spectroscopy that monitors the growth and disappearance of features observed in the initial stages of the process. The resulting PA/urea crystals will be studied by high-resolution X-ray diffraction, Raman spectroscopy, inelastic neutron scattering spectroscopy, and conductivity measurements, both in bulk crystal measurements and by the use of conductive atomic force microscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结想象一下这样一个世界:可无限充电的电池非常轻,可以无损耗地存储电能,电力线不会损失电力,便携式医疗成像扫描仪-这些都是可以通过室温(RT),环境压力超导体(无电阻传输电力的材料)的发展实现的一些变革性应用。理论预测,线性分子导体,如聚乙炔(PA),其碳原子链通过交替的双键和单键连接,可能是一种这样的超导材料。在实验室中,PA在合成时不是线性的,变得高度无序(像意大利面条),并且容易与自身或邻近分子反应。就像蜿蜒的道路会减缓交通一样,一条笔直的PA链可以扭曲,产生弯曲和扭曲的几何形状,从而显着影响其导电性-仅这一因素就是在这种和其他潜在的有机导电聚合物中实现RT超导性的主要实验瓶颈。 在材料研究部的支持下,锡拉丘兹大学的Michael Sponsler教授和他的研究小组将专注于制备一种全新形式的PA,这种PA具有分离的高度有序的单链,这些单链被隔离在长而直的隧道中。为了实现能够表现出潜在的RT超导性的线性几何形状,PA链将在蜂窝状尿素晶体的隧道内合成,然后研究以确认它们的几何形状和电学行为。如果成功,该项目将首次生产结构有序的PA,产生一种新型有机材料,对导电聚合物的理论和应用产生重大影响,并揭示RT,环境压力超导状态,这是一个长期难以实现的目标。 此外,整合大量的实验努力来表征这些链及其行为,将有助于教育从本科到博士后水平的新化学家,包括女性和在这些跨学科研究项目中代表性不足的少数民族。技术摘要聚乙炔(PA)是最简单的共轭聚合物,被认为是一种长直链半导体,表现出键长交替(BLA)。基于基础计算预测PA链不能有BLA,因为振动零点能高于Peierls势垒,所提出的研究的前提是,PA在其完全扩展的全反式构象中的单个孤立链将具有半填充带电子结构,因此将是没有掺杂的一维(1D)金属聚合物。此外,与1D电导率相关的碳-碳(C-C)键交替模式(1455 1/cm)的振动频率比室温(RT)下的热能高约7倍,排除了作为电子散射机制的热激发。由于不存在阻止电子运动的机制,PA中的高温超导性是真实的可能性。该项目由材料研究部支持,将通过以下方式测试以下假设:(1)通过将聚合物链包裹成具有纳米尺寸直径的结构-尿素包合物晶体的平行隧道,合成有序的、完全延伸的PA链;和(2)表征所产生的长链的结构和电子性质,以证明它们不显示出BLA并且对DC电流没有可测量的电阻,表明PA充当RT、环境压力超导体。PA/尿素包合物晶体将由尿素和光反应前体分子(E,E,E)-1,6-二碘己三烯(DIHT)通过称为消除-缩合包合聚合的新的光诱导过程制成。这种独特的方法采用DIHT分子末端碳-碘(C-I)键的光化学键断裂,形成新的C-C键,并从脲主体晶体的隧道中消除碘。光化学过程持续进行,直到所有碘离开晶体,并且在结晶尿素通道内形成高分子量和完全共轭的PA链。将通过质量损失测量来监测所包括的DIHT到PA的光化学转化,以跟踪从初始晶体中损失的碘的化学计量量,并通过拉曼光谱来监测在该过程的初始阶段中观察到的特征的生长和消失。所得的PA/尿素晶体将通过高分辨率X射线衍射、拉曼光谱、非弹性中子散射光谱和电导率测量进行研究,包括大块晶体测量和使用导电原子力显微镜。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sponsler其他文献
Michael Sponsler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sponsler', 18)}}的其他基金
REU Site: Undergraduate Research in Chemistry at Syracuse University
REU 网站:雪城大学化学本科生研究
- 批准号:
1950802 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
REU Site: Undergraduate Research in Chemistry at Syracuse University
REU 网站:雪城大学化学本科生研究
- 批准号:
1659775 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SGER: Metathesis-Doped Polyacetylene
SGER:复分解掺杂聚乙炔
- 批准号:
0320583 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
水稻 SUPER WOMAN 5 (SPW5) 基因调控花器官发育的分子机制解析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肌细胞生成素与Super-enhancer互作形成正反馈环路促进肌损伤修复的机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
水稻SUPER WOMAN 3(SPW3)基因调控花器官发育的分子机制研究
- 批准号:32100287
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
- 批准号:22164007
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Super-enhancer驱动的LINC01468通过增强癌基因翻译促进鼻咽癌发生发展的机制研究
- 批准号:2020JJ4838
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
水稻SUPER BRABCH 1基因调控穗发育的分子机制研究
- 批准号:31971919
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Max-plus代数上的super本征问题
- 批准号:11901486
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Super-lncRNA与super-enhancer的相互作用在乳腺癌发生发展中作用机制的研究
- 批准号:81902680
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Development of Injectable Super-Lubricious Microgels for Sustained Release of Platelet-Rich Plasma to Treat Post-Traumatic Osteoarthritis
开发可注射的超润滑微凝胶,用于持续释放富含血小板的血浆以治疗创伤后骨关节炎
- 批准号:
10659591 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Designing a targeted 'super adjuvant' nanoparticle platform for vaccination
设计用于疫苗接种的靶向“超级佐剂”纳米颗粒平台
- 批准号:
10647117 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Lubricant-less super-environmental adaptive engineering brought by in-situ generation of lubricats on friction surfaces
摩擦表面原位生成润滑剂带来的无润滑剂超环境适应工程
- 批准号:
22K18751 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Development of in-situ underwater observation system that enables to detect super micro plastics
开发可检测超微塑料的原位水下观测系统
- 批准号:
21H01554 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Challenge to novel copper electrolysis process of super power saving type using resources circulation type recycling materials
利用资源循环型回收材料的超节能型新型铜电解工艺的挑战
- 批准号:
21K18829 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Super-multiplexed fluorescence nanoscopy for imaging-based proteomics
用于基于成像的蛋白质组学的超级多重荧光纳米镜
- 批准号:
10471273 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Super-multiplexed fluorescence nanoscopy for imaging-based proteomics
用于基于成像的蛋白质组学的超级多重荧光纳米镜
- 批准号:
10028050 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别: