EAGER: Accurate Estimation of Indoor Airborne Virus Transmission based on a Novel Multiscale Data-Driven Framework

EAGER:基于新型多尺度数据驱动框架准确估计室内空气传播病毒传播

基本信息

  • 批准号:
    2134083
  • 负责人:
  • 金额:
    $ 29.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Airborne spread of viral diseases is recognized as an important mode of transmission. Many aspects of this transmission, including the ejection, evaporation, and dispersion of virus-laden droplets by human expiratory events within indoor spaces, have been studied. However, a science-based framework that can quickly and reliably predict the spread of airborne contagion in indoor spaces needs to be developed. Such a framework would help to assess the risk of contagion in classrooms, restaurants, elevators, aircraft cabins, etc. and to inform policy makers. This knowledge would form a science-based foundation for building a reliable and user-friendly prediction tools that can be used by researchers, policy makers, administrators, and the general public to make informed decisions about the risks of viral contagion in indoor spaces.There are many important parameters that influence the spread of airborne contagion, and the inherently nonlinear nature of the problem makes simple predictions impossible. A multiscale, data-driven framework for the rapid and accurate prediction of airborne contagion spread in confined spaces will be developed in this project. There are two key innovations in the development of this framework. The first involves separating the overall problem into the key components of virus-scale, source-scale (breathing, talking, coughing, or sneezing), and room-scale components. The second consists of inverting the problem by first generating a large database of particle dispersion information before addressing the individual scenarios of contagion. These two innovations allow a few high-fidelity simulations to explore countless scenarios of indoor virus transmission without the need for separate, computationally intensive predictions of each individual scenario. This framework, along with the ability to rapidly obtain flow information within indoor spaces, will offer an unprecedented predictive capability. The framework will also evaluate uncertainties associated with the prediction by accounting for the stochastic nature of the ejection and the turbulent nature of the flow. Improvements to this framework and tool should extend their applicability to other airborne infectious diseases as well as to indoor air quality. The data-driven framework can be further extended to address the risk of contagion in outdoor spaces and can be tailored to address other problems involving particulate dispersion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
病毒性疾病的空气传播被认为是一个重要的传播方式。已经研究了这种传播的许多方面,包括人体在室内空间呼气事件中携带病毒的飞沫的喷射、蒸发和扩散。然而,需要开发一种基于科学的框架,能够快速可靠地预测室内空间空气传染的传播。这样一个框架将有助于评估教室、餐馆、电梯、飞机机舱等的传染风险,并为决策者提供信息。这些知识将为建立可靠和用户友好的预测工具奠定科学基础,供研究人员、决策者、管理人员和公众使用,以便就室内空间病毒传染的风险做出知情决定。有许多重要的参数影响空气传染的传播,而问题固有的非线性性质使得简单的预测是不可能的。该项目将开发一个多尺度、数据驱动的框架,用于快速、准确地预测密闭空间中空气传播的传染病。在这个框架的发展过程中有两个关键的创新。第一种方法是将整个问题分为病毒规模、源头规模(呼吸、说话、咳嗽或打喷嚏)和房间规模的关键组成部分。第二种方法是在处理传染的个别情况之前,首先生成一个粒子扩散信息的大型数据库,从而扭转问题。这两项创新允许一些高保真模拟来探索室内病毒传播的无数场景,而不需要对每个单独的场景进行单独的计算密集型预测。该框架以及快速获取室内空间流动信息的能力,将提供前所未有的预测能力。该框架还将通过考虑喷射的随机性质和流动的湍流性质来评估与预测相关的不确定性。对这一框架和工具的改进应使其适用于其他空气传播传染病以及室内空气质量。数据驱动的框架可以进一步扩展,以解决室外空间的传染风险,并可以量身定制,以解决涉及颗粒扩散的其他问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effectiveness of RANS in predicting indoor airborne viral transmission: A critical evaluation against LES
  • DOI:
    10.1016/j.compfluid.2023.105845
  • 发表时间:
    2023-03-14
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Choudhary,K.;Krishnaprasad,K. A.;Balachandar,S.
  • 通讯作者:
    Balachandar,S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sivaramakrishna Balachandar其他文献

Sivaramakrishna Balachandar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sivaramakrishna Balachandar', 18)}}的其他基金

Workshop on Patterns in Science and Technology, March 31 - April 2, 2014, Gainesville, FL
科学技术模式研讨会,2014 年 3 月 31 日至 4 月 2 日,佛罗里达州盖恩斯维尔
  • 批准号:
    1430838
  • 财政年份:
    2014
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Workshop on Environmental and Extreme Multiphase Flows, Gainesville, FL, March 14 - 16, 2012
环境和极端多相流研讨会,佛罗里达州盖恩斯维尔,2012 年 3 月 14 日至 16 日
  • 批准号:
    1217409
  • 财政年份:
    2012
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Collaborative Res: Physics of lutoclines and laminarization extracted from turbulence-resolved numerical investigations on sediment transport in wave-current bottom boundary layer
协作研究:从波流底部边界层沉积物输运的湍流解析数值研究中提取的卢斜层和层化物理
  • 批准号:
    1131016
  • 财政年份:
    2011
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
SGER: A novel computational approach to multiphase flow
SGER:一种新颖的多相流计算方法
  • 批准号:
    0639446
  • 财政年份:
    2006
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
GOALI: Integrated Experimental and Computational Multi-Zonal Approach to Multiple-Scale Problems: Flow in a Stirred Tank Reactor
GOALI:针对多尺度问题的综合实验和计算多区域方法:搅拌釜反应器中的流动
  • 批准号:
    9910543
  • 财政年份:
    2000
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Large-eddy Simulation & Mathematical Analysis of Non-equilibrium & Non-linear Processes in Mantle Convection
数学科学:大涡模拟
  • 批准号:
    9622889
  • 财政年份:
    1996
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Study of Strongly Chaotic Thermal Convection in the Earth's Mantle: Analytical, Computational and Visualization Perspectives
数学科学:地幔中的强混沌热对流研究:分析、计算和可视化视角
  • 批准号:
    9201042
  • 财政年份:
    1993
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:@NASA: Combining Physics and Deep Learning for Accurate River Discharge and Bathymetry Estimation from the Surface Water and Ocean Topography Mission
RII Track-4:@NASA:结合物理学和深度学习,通过地表水和海洋地形任务进行准确的河流流量和水深测量估计
  • 批准号:
    2327502
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Realization of highly accurate estimation of structural vibration characteristics by blind deconvolution and Bayesian inference
通过盲反卷积和贝叶斯推理实现结构振动特性的高精度估计
  • 批准号:
    22K18830
  • 财政年份:
    2022
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Accurate Above Ground Biomass Estimation using novel hierarchical datasets to train Machine Learning Models
使用新颖的分层数据集训练机器学习模型进行准确的地上生物量估算
  • 批准号:
    10004871
  • 财政年份:
    2021
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Small Business Research Initiative
Accurate evaluation of concrete pore structure by inverse analysis and its application for advanced durability estimation and inspection
通过反演分析准确评估混凝土孔结构及其在高级耐久性评估和检测中的应用
  • 批准号:
    21H01404
  • 财政年份:
    2021
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bayesian estimation using external force/stress information for accurate EEG artifact removal
使用外力/应力信息进行贝叶斯估计,以准确去除脑电图伪影
  • 批准号:
    20K11913
  • 财政年份:
    2020
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precise 3-D remote sensing using multi-spectral image estimation and accurate 3-D reconstruction
使用多光谱图像估计和精确的 3D 重建进行精确的 3D 遥感
  • 批准号:
    20K06319
  • 财政年份:
    2020
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Metrically-accurate 3D Face Shape Estimation for Applications in Health Care
适用于医疗保健应用的测量精确的 3D 面部形状估计
  • 批准号:
    2449232
  • 财政年份:
    2020
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Studentship
Accurate and continual water-level prediction in small rivers using inverse estimation method of rainfall-runoff processes
利用降雨径流过程反演法对小河流水位进行准确连续预测
  • 批准号:
    20H02249
  • 财政年份:
    2020
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Inducing and Exploiting Grid Structures for Fast, Adaptive, and Accurate Estimation
引入和利用网格结构进行快速、自适应和准确的估计
  • 批准号:
    1953111
  • 财政年份:
    2020
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
CRII: AF: Towards an Accurate and Complete Characterization of the Solution Space in Phylogeny Estimation from Mixed Samples
CRII:AF:在混合样本的系统发育估计中实现解决方案空间的准确和完整的表征
  • 批准号:
    1850502
  • 财政年份:
    2019
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了